欢迎来到三人行教育网,代理招生网站!

全国切换城市

咨询热线 400-6169-615

位置:三人行教育网,代理招生网站 > 新闻资讯 > 教育新闻 > 教育要闻 >  佛山学大新初三培训班。!

佛山学大新初三培训班。!

来源:三人行教育网,代理招生网站

2025-07-03 14:56:24|已浏览:3次

佛山学大新初三培训班。!

佛山学大新初三培训班。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:扎根,是一种看不见的力量,它默默地生长,让人生慢慢变强。佛山学大新初三培训班。!。中小学教育—个性化一对一辅导教育品牌!


教育品牌 特色服务 教育经验 覆盖城市 骨干教师 受益学生 中小学教育全日制课程 特色课程Special course 个性化学习 / 个性化小组课 全国免费咨询热线400-6169-615.

佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:若不努力,除了年纪在涨,头发变少,容颜变老,你买不起的还是买不起,你喜欢的人还是与你无关。。
佛山学大新初三培训班。!


佛山学大新初三培训班。!  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:生命需要保持一种激情,激情能让别人感到你是不可阻挡的时候,就会为你的成功让路!一个人内心不可屈服的气质是可以感动人的,并能够改变很多东西。。五年级数学实际应用案例


一、行程问题
相遇问题
例如“甲、乙两列火车同时从两地相向而行,经过12小时两车相遇。”这是典型的相遇问题,通常可以根据两车的速度和行驶时间来求两地之间的距离。如果再给出甲、乙两车各自的速度,就可以用公式“路程 = 速度和×相遇时间”来求解两地的距离。假设甲车速度为
?
1

1
?
 ,乙车速度为
?
2

2
?
 ,那么两地相距
(
?
1
+
?
2
)
×
12
(v 
1
?
 +v 
2
?
 )×12千米。
又如“甲乙相距640千米,两辆汽车同时从甲乙两地相对开出,第一辆汽车每小时行46千米,第二辆汽车每小时行34千米”,这里已知两地距离和两车速度,要求相遇时间,就可以根据公式“相遇时间 = 路程÷速度和”,即
640
÷
(
46
+
34
)
640÷(46+34)小时。
追及问题(本题未涉及,但为行程问题常见类型补充)
比如甲、乙两人在同一条路上同向而行,甲的速度比乙快,开始时甲在乙后面一定距离处,经过一段时间甲追上乙。可以根据速度差、追及时间和开始时的距离关系来求解问题。
二、工程问题(本题未直接体现,但为数学实际应用常见类型补充)
例如一项工程,甲队单独做需要
?
x天完成,乙队单独做需要
?
y天完成,那么两队合作完成这项工程需要的时间可以用公式“
1
÷
(
1
?
+
1
?
)
1÷( 
x
1
?
 + 
y
1
?
 )”来计算。
三、销售问题
像在购物场景中,“爸爸、妈妈带着小玲和两个同学去逛公园,成人票每张5元,儿童票每张2.5元。买门票一共需要多少钱”,这里需要根据不同人群对应的票价和人数来计算总花费。有2个成人和3个儿童,总花费就是
2
×
5
+
3
×
2.5
2×5+3×2.5元。
四、重量与数量关系问题
“回收1吨废纸,可以保护16棵树,回收54.5吨废纸可以保护多少棵树”,这就是根据每吨废纸可保护树木的数量与回收废纸的重量来计算保护树木的总数,即
54.5
×
16
54.5×16棵。
五、面积、体积相关问题
面积问题
“一个房间长8.1m,宽5.2m.现在要铺上边长为0.6m的正方形地砖,100块够吗(不考虑损耗)”,需要先计算房间地面的面积(长×宽)和100块地砖的面积(地砖边长×边长×100),然后比较两者大小来判断地砖是否够用。
体积问题
“有一个养鱼池长21米,宽16米,深3.6米,要在养鱼池各个面上抹一层水泥,防止渗水,如果每平方米用水泥7千克,一共需要水泥多少千克”,首先要计算出养鱼池的表面积(五个面的面积之和,因为上面不抹水泥),然后乘以每平方米用的水泥量,这里涉及到长方体表面积和体积相关的计算知识。  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:人有退路,就有些许安全感。 等到哪一天,你真没了退路, 你就发现眼前哪条路都能走, 也能通。佛山学大新初三培训班。!。



佛山学大新初三培训班。!


佛山学大新初三培训班。!  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:有些东西留不住了就请放手吧,给它自由,它会更加美丽。。中小学教育(一对一辅导)专注于学生学习能力的培养以及学生学科知识的辅导,中小学教育(一对一辅导)视教学质量为生命,受到许多学生和家长的认可。

中小学教育-专注个性化一对一辅导-免费试听入口

中小学教育秉承"以人为本、因材施教"的个性化教育理念,打造了包括个性化培训、全日制教育、职业教育、文化服务等在内的丰富业务模式. 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:一个人的孤独不可怕,两个人还孤独才可怕。

佛山学大新初三培训班。!  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:人生有两种境界,一种是痛而不言,另一种是笑而不语。。



佛山学大新初三培训班。!


佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:遇见了心爱的人,可以说是幸运的,无论结局怎样,都可以说是幸福的。白头到老,固然很好,如果分手,或者为爱情伤心,也都很幸福,因为,毕竟爱过……佛山学大新初三培训班。!。四年级数学速算技巧


一、乘法速算技巧
(一)一般两位数乘法
乘数个位与被乘数相加法
方法:乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。例如计算
15
×
17
15×17,
15
+
7
=
22
15+7=22(前积),
5
×
7
=
35
5×7=35(后积),结果就是
255
255。可以理解为
15
×
17
=
15
×
(
10
+
7
)
=
150
+
(
10
+
5
)
×
7
=
150
+
70
+
5
×
7
15×17=15×(10+7)=150+(10+5)×7=150+70+5×7,熟练后可直接用前面的简便算法
15
+
7
15+7,而不用
150
+
70
150+70。再如
17
×
19
17×19,
17
+
9
=
26
17+9=26,
7
×
9
=
63
7×9=63,即
260
+
63
=
323
260+63=323。
十位相同个位不同的两位数相乘
方法:被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。例如
43
×
46
43×46,
(
43
+
6
)
×
40
=
1960
(43+6)×40=1960(前积),
3
×
6
=
18
3×6=18(后积),结果就是
1960
+
18
=
1978
1960+18=1978。又如
89
×
87
89×87,
(
89
+
7
)
×
80
=
7680
(89+7)×80=7680(前积),
9
×
7
=
63
9×7=63(后积),结果为
7680
+
63
=
7743
7680+63=7743。
首位相同,两尾数和等于10的两位数相乘
方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。例如
56
×
54
56×54,
(
5
+
1
)
×
5
=
30
(5+1)×5=30(前积),
6
×
4
=
24
6×4=24(后积),结果就是
3024
3024。再如
73
×
77
73×77,
(
7
+
1
)
×
7
=
56
(7+1)×7=56(前积),
3
×
7
=
21
3×7=21(后积),结果为
5621
5621。
首位相同,尾数和不等于10的两位数相乘
方法:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例如计算
53
×
58
53×58,
5
×
5
=
25
5×5=25(前积),
(
3
+
8
)
×
5
=
55
(3+8)×5=55(中积,这里满十进一),
3
×
8
=
24
3×8=24(后积),结果就是
3074
3074。
被乘数首尾相同,乘数首尾和是10的两位数相乘
方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例如
(
3
+
1
)
×
6
=
24
(3+1)×6=24(前积),
6
×
7
=
42
6×7=42(后积),结果就是
2442
2442;又如
(
1
+
1
)
×
9
=
18
(1+1)×9=18(前积),
9
×
9
=
81
9×9=81(后积),结果为
1881
1881。
被乘数首尾和是10,乘数首尾相同的两位数相乘
方法:两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。例如
4
×
9
+
9
=
45
4×9+9=45(前积),
6
×
9
=
54
6×9=54(后积),结果就是
4554
4554;再如
8
×
3
+
3
=
27
8×3+3=27(前积),
2
×
3
=
6
2×3=6(后积),结果为
2706
2706。
两首位和是10,两尾数相同的两位数相乘
方法:两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。例如
7
×
3
+
8
=
29
7×3+8=29(前积),
8
×
8
=
64
8×8=64(后积),结果就是
2964
2964;又如
2
×
8
+
3
=
19
2×8+3=19(前积),
3
×
3
=
9
3×3=9(后积),结果为
1909
1909。
(二)特殊两位数乘法
个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。例如
51
×
31
51×31,
50
×
30
=
1500
50×30=1500,
50
+
30
=
80
50+30=80(这里数字0在不熟练的时候作为助记符,熟练后就可以不使用了),结果就是
1581
1581;又如
81
×
91
81×91,
80
×
90
=
7200
80×90=7200,
80
+
90
=
170
80+90=170,结果为
7371
7371。
求11 - 19的平方
方法:底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。例如
17
×
17
17×17,
17
+
7
=
24
17+7=24(前积),
7
×
7
=
49
7×7=49(后积),结果就是
289
289。
个位是1的两位数的平方
方法:底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。例如
71
×
71
71×71,
7
×
7
=
49
7×7=49(前积),
7
×
2
=
14
7×2=14(后积),结果就是
5041
5041。
个位是5的两位数的平方
方法:十位加1乘以十位,在得数的后面接上25。例如
35
×
35
35×35,
(
3
+
1
)
×
3
=
12
(3+1)×3=12,结果就是
1225
1225。
二、加法速算技巧
加法交换律和结合律
要善于观察题目,同时要有凑整意识。例如计算
5.7
+
3.1
+
0.9
+
1.3
5.7+3.1+0.9+1.3,利用加法交换律和结合律可变为
(
5.7
+
1.3
)
+
(
3.1
+
0.9
)
=
7
+
4
=
11
(5.7+1.3)+(3.1+0.9)=7+4=11。加法交换律为
?
+
?
=
?
+
?
a+b=b+a,加法结合律为
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c)。
三、减法速算技巧
减法的性质
用字母公式表示为
?
?
?
?
?
=
?
?
(
?
+
?
)
A?B?C=A?(B+C),同时注意逆进行。例如
7691
?
(
691
+
250
)
=
7691
?
691
?
250
=
7000
?
250
=
6750
7691?(691+250)=7691?691?250=7000?250=6750。
四、除法速算技巧
除法的性质
用字母公式表示为
?
÷
?
÷
?
=
?
÷
(
?
×
?
)
A÷B÷C=A÷(B×C),同时注意逆进行。例如
8.3
×
67
÷
8.3
÷
6.7
=
8.3
÷
8.3
×
67
÷
6.7
=
1
×
10
=
10
8.3×67÷8.3÷6.7=8.3÷8.3×67÷6.7=1×10=10。
接近整百的数的除法运算
这种题型需要拆数、转化等技巧配合。例如
302
÷
5
=
(
300
+
2
)
÷
5
=
300
÷
5
+
2
÷
5
=
60
+
0.4
=
60.4
302÷5=(300+2)÷5=300÷5+2÷5=60+0.4=60.4;
298
÷
5
=
(
300
?
2
)
÷
5
=
300
÷
5
?
2
÷
5
=
60
?
0.4
=
59.6
298÷5=(300?2)÷5=300÷5?2÷5=60?0.4=59.6。
五、其他速算技巧
带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以带符号搬家。例如
2.5
×
0.125
×
8
×
4
=
2.5
×
4
×
0.125
×
8
=
(
2.5
×
4
)
×
(
0.125
×
8
)
=
10
×
1
=
10
2.5×0.125×8×4=2.5×4×0.125×8=(2.5×4)×(0.125×8)=10×1=10。
乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配。例如
0.93
×
67
+
33
×
0.93
=
0.93
×
(
67
+
33
)
=
0.93
×
100
=
93
0.93×67+33×0.93=0.93×(67+33)=0.93×100=93。
提取公因式:例如
3
?
+
5
?
=
(
3
+
5
)
?
=
8
?
3x+5x=(3+5)x=8x。
注意构造:让算式满足乘法分配律的条件。
凑整法
用此方法时,需要注意观察,发现规律。还要注意“有借有还”。例如
9999
+
999
+
99
+
9
=
(
10000
?
1
)
+
(
1000
?
1
)
+
(
100
?
1
)
+
(
10
?
1
)
=
(
10000
+
1000
+
100
+
10
)
?
4
=
11106
9999+999+99+9=(10000?1)+(1000?1)+(100?1)+(10?1)=(10000+1000+100+10)?4=11106。
拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如
2
2和
5
5,
4
4和
5
5,
4
4和
25
25,
8
8和
125
125等。分拆还要注意不要改变数的大小。例如
25
×
32
=
25
×
(
4
×
8
)
=
25
×
4
×
8
=
100
×
8
=
800
25×32=25×(4×8)=25×4×8=100×8=800。
利用“估算平均数”速算
例如
712
+
694
+
709
+
688
712+694+709+688,观察算式得到平均数
700
700,将每个数与平均数的差累计,可得
12
?
6
+
9
?
12
=
3
12?6+9?12=3,最后计算为
700
×
4
+
3
=
2803
700×4+3=2803。
熟记常用数据
例如乘法口诀表、圆周率、
1
1至
20
20的平方数、
20
20以内的质数表等等。这有助于在计算时快速得出结果。  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:世界上最难忘记的两件事,一是遇见,二是忘记。佛山学大新初三培训班。!。


佛山学大新初三培训班。!  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:你不努力,永远不会有人对你公平。只有你努力了,有了资源,有了话语权以后,你才可能为自己争取公平的机会。佛山学大新初三培训班。!。欢迎预约就近校区免费测评体验课。预约免费试听课:400-6169-685.

  • 相关阅读