咨询热线 400-6169-615
2025-07-05 16:10:37|已浏览:7次
禅城中考辅导。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:有些感情纠缠久了,到后来你已经分不清楚,到底你是要爱,还是要赢。禅城中考辅导。!。
禅城中考辅导。!五年级上册数学重点难点解析
一、小数乘法
重点
计算法则:先把小数扩大成整数,按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。例如:
1.5
×
0.8
1.5×0.8,先计算
15
×
8
=
120
15×8=120,因数共有两位小数,所以结果是
1.20
1.20,小数部分末尾的
0
0要去掉,最终结果为
1.2
1.2。同时,计算结果中小数部分位数不够时,要用
0
0占位,如
0.25
×
0.4
=
0.100
=
0.1
0.25×0.4=0.100=0.1。
积与因数的大小关系:一个数(
0
0除外)乘大于
1
1的数,积比原来的数大;一个数(
0
0除外)乘小于
1
1的数,积比原来的数小。如
1.01
×
0.99
>
0.99
1.01×0.99>0.99,
2.6
×
0.99
<
2.6
2.6×0.99<2.6。
倍数应用题:求多的用“×”,求少的用“÷”,求多少倍用“÷”。
难点
确定积的小数点位置:特别是因数中小数位数较多或者积的末尾有
0
0的情况,容易出错。例如
0.25
×
0.04
=
0.01
0.25×0.04=0.01,要准确数出因数中的小数位数来确定积的小数点位置。
理解积的变化规律:需要学生掌握因数变化时积的相应变化,在解决一些实际问题时能够灵活运用。
二、小数除法
重点
计算法则:
小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商
0
0,点上小数点。如果有余数,要添
0
0再除。例如
1.75
÷
5
1.75÷5,按照整数除法计算
17
÷
5
=
3
?
?
2
17÷5=3??2,然后
25
÷
5
=
5
25÷5=5,结果是
0.35
0.35。
除数是小数的除法,先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。如
7.65
÷
0.85
7.65÷0.85,将除数和被除数同时扩大
100
100倍变为
765
÷
85
=
9
765÷85=9。
商不变性质:被除数和除数同时扩大或缩小相同的倍数(
0
0除外),商不变。
商与被除数、除数的关系:除数不变,被除数扩大(缩小),商随着扩大(缩小);被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
难点
除数是小数的除法计算:在将除数转化为整数的过程中,容易忘记同时移动被除数的小数点,导致计算错误。
商的近似数:根据要求保留一定的小数位数时,要正确使用“四舍五入”法,并且在计算钱数时,保留两位小数表示计算到分,保留一位小数表示计算到角等实际应用场景的理解。
三、位置
重点
数对的概念:确定物体的位置要用到数对(先列:即竖,后行即横排)。例如在一个坐标图中,点
(
3
,
4
)
(3,4)表示第
3
3列第
4
4行。
用数对解决问题:一是给出一对数对,要能在坐标图中标出物体所在位置的点;二是给出坐标中的一个点,要能用数对表示。
难点:理解数对的意义以及数对与坐标图中位置的对应关系,尤其是在一些复杂的图形或者场景中准确确定位置。
四、可能性
重点
可能性的大小计算:把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
判断事件发生的可能性:区分确定事件(必然事件和不可能事件)和不确定事件(可能发生的事件)。
难点:对于一些复杂的情境,准确分析各种可能性情况并计算其大小。
五、简易方程
重点
方程的概念:方程必须满足两个条件,必须是等式且必须有未知数(两者缺一不可)。例如
2
?
+
3
=
7
2x+3=7是方程。
解方程的方法:利用等式的性质,如等式两边同时加、减、乘、除同一个数(
0
0除外),等式仍然成立,来求出方程的解。
用方程解决实际问题:找出题目中的等量关系,设未知数,列方程求解。
难点
列方程解应用题:找出合适的等量关系对于学生来说可能比较困难,需要对题目中的数量关系有深入的理解。
理解等式的性质并正确解方程:特别是在涉及到含有括号或者需要移项的方程时,容易出现计算错误。
五年级下册数学重点难点解析
一、因数和倍数
重点
概念理解:理解因数、倍数、质数、合数、奇数、偶数等概念。例如,
6
÷
2
=
3
6÷2=3,那么
2
2和
3
3是
6
6的因数,
6
6是
2
2和
3
3的倍数;一个数,如果只有
1
1和它本身两个因数,这样的数叫做质数(或素数),如
2
2、
3
3、
5
5等;一个数,如果除了
1
1和它本身还有别的因数,这样的数叫做合数,如
4
4、
6
6、
8
8等。
2、3、5的倍数特征:个位上是
0
0、
2
2、
4
4、
6
6、
8
8的数是
2
2的倍数;个位上是
0
0或
5
5的数是
5
5的倍数;一个数各位上的数字之和是
3
3的倍数,这个数就是
3
3的倍数。
难点
概念辨析:因数和倍数是相互依存的关系,学生容易孤立地看待这些概念;区分质数、合数、奇数、偶数的概念,尤其是一些特殊数字(如
1
1既不是质数也不是合数)。
应用倍数特征解决问题:在一些综合问题中,准确运用倍数特征进行分析和计算。
二、多边形的面积
重点
面积公式:
三角形的面积 = 底×高÷
2
2(
?
△
=
?
×
?
÷
2
S△=a×h÷2)。
梯形的面积 =(上底 + 下底)×高÷
2
2。
组合图形面积计算:将组合图形转化为已学过的简单图形(如三角形、梯形、长方形等)的面积之和或差来计算。
难点
三角形和梯形面积公式的推导及应用:理解公式的推导过程有助于更好地掌握和运用公式,但是推导过程涉及到图形的割补、拼接等操作,对于学生来说有一定难度。
组合图形的分解与计算:正确分析组合图形的组成部分,选择合适的计算方法是难点所在。
三、分数的意义和性质
重点
分数的概念:理解分数的意义,包括单位“
1
1”的含义,例如把一个整体平均分成若干份,表示这样一份或几份的数叫做分数。
分数的基本性质:分数的分子和分母同时乘或者除以相同的数(
0
0除外),分数的大小不变。这是约分和通分的依据。
分数与除法的关系:
?
÷
?
=
?
?
a÷b=
b
a
?
(
?
≠
0
b
=0),可以帮助理解分数的意义和运算。
难点
分数意义的理解:特别是在涉及到不同情境下单位“
1
1”的确定时,学生可能会感到困惑。
约分和通分的实际操作:准确找出分子分母的最大公因数和最小公倍数进行约分和通分。
四、分数的加法和减法
重点
同分母分数加减法:分母不变,分子相加减。例如
3
5
+
1
5
=
4
5
5
3
?
+
5
1
?
=
5
4
?
。
异分母分数加减法:先通分,化为同分母分数,再按照同分母分数加减法的法则进行计算。如
1
2
+
1
3
=
3
6
+
2
6
=
5
6
2
1
?
+
3
1
?
=
6
3
?
+
6
2
?
=
6
5
?
。
难点
通分的计算:正确找到两个分母的最小公倍数进行通分,在计算过程中容易出现错误。
解决分数加减法的实际问题:分析题目中的数量关系,将实际问题转化为分数加减法的运算。
五、图形的运动(三)
重点
旋转的性质:理解图形旋转的三要素(旋转中心、旋转方向、旋转角度),以及旋转前后图形的形状、大小不变,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角等性质。
旋转图形的绘制:根据给定的条件准确绘制旋转后的图形。
难点
确定旋转的要素:在一些复杂图形中准确确定旋转中心、旋转方向和旋转角度。
绘制复杂图形的旋转图形:特别是对于不规则图形的旋转绘制,需要较强的空间想象能力。
六、折线统计图
重点
折线统计图的特点:不仅可以反映数量的多少,还能反映出数量的增减变化情况。
绘制折线统计图:根据数据正确绘制折线统计图,包括确定横纵轴的单位、标点、连线等步骤。
难点
对折线统计图的分析:从折线统计图中获取信息,分析数据的变化趋势,并进行合理的预测。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:如果有初见时的强烈动心,还有熟悉后的长久安心,那大概就是真爱了。禅城中考辅导。!。
禅城中考辅导。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:重要的不是治愈,而是带着病痛活下去。。四年级几何题常见误区
一、图形认知方面
(一)平行线与垂线
对概念理解不透彻
在判断两条直线是否平行或垂直时,有些学生可能只是凭借直观感觉,而没有准确依据概念。例如,对于在同一平面内不相交的两条直线才是平行线这一概念,学生可能会忽略“在同一平面内”这个前提条件。如果给出一个不在同一平面内看似不相交的两条直线的例子,学生可能会误判为平行线。另外,在判断两条直线是否垂直时,没有准确理解相交成直角这个关键条件,对于一些接近直角的情况可能会误判。例如在一些斜着摆放的图形中,看似垂直但实际角度并非90度的情况,学生容易出错。
忽略特殊情况
在学习平行线和垂线的性质时,如“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”以及“如果两条直线都和第三条直线垂直,那么这两条直线也互相平行”,学生可能会忽略这两种性质的适用条件,在复杂图形中不能正确运用。比如在一些由多个三角形或四边形组合成的图形中,找出满足这些性质的直线时容易出错。而且对于长方形和正方形是特殊的平行四边形,平行四边形容易变形具有不稳定特性等特殊情况,学生可能没有深入理解,在涉及到相关的概念辨析或实际应用时容易产生误区。
(二)角的认识
角的分类判断错误
在区分锐角、直角、钝角、平角和周角时,可能会出现错误。例如对于接近直角的锐角或钝角,学生可能无法准确判断。像179度的角是钝角,但有些学生可能会误判为平角,因为他们对平角是180度这个概念的理解不够精确,只是大概认为接近180度就是平角。
角的度量问题
在用量角器度量角的度数时,可能会出现以下错误。一是量角器的中心没有与角的顶点重合,零刻度线没有与角的一条边重合;二是读刻度时,分不清是读内圈刻度还是外圈刻度,特别是在测量钝角时,容易读错刻度导致角度测量错误。
(三)四边形的认知
梯形概念不清
对于梯形是只有一组对边平行的四边形这一概念,学生可能会错误地认为只要有一组对边平行就是梯形,忽略了另一组对边不平行这个条件。例如在一些不规则四边形中,有一组对边看起来平行,但另一组对边也有部分平行趋势的情况下,学生可能会误判为梯形。
平行四边形特征把握不准
对于平行四边形对边相等、对角相等、两组对边分别平行这些特征,在实际判断图形是否为平行四边形或者进行相关计算时可能会出错。例如在一个变形后的平行四边形(如拉伸后的长方形框架变成的平行四边形)中,可能会错误地认为对边长度发生了改变,或者在计算平行四边形的面积时,忘记使用底乘以对应的高这个公式,而错误地使用相邻两边相乘。
二、图形计算方面
(一)周长计算
公式运用错误
在计算长方形周长时,如果公式是
?
=
(
?
+
?
)
×
2
C=(a+b)×2,学生可能会忘记乘以2,或者在已知周长和长(或宽)求宽(或长)时,不能正确地进行逆运算。对于正方形周长
?
=
4
?
C=4a,可能会在边长换算或者计算过程中出现错误,比如把正方形边长的单位换算错误后再代入公式计算周长。
图形组合的周长计算失误
当遇到由多个图形组合而成的复杂图形计算周长时,学生可能会错误地计算。例如在一个长方形中挖去一个小正方形或者小三角形后计算剩余图形的周长,学生可能会多算或者少算某些边的长度,没有正确分析组合图形的边长组成关系。
(二)面积计算
面积公式混淆
在学习了长方形
?
=
?
?
S=ab、正方形
?
=
?
2
S=a
2
、三角形
?
=
?
?
÷
2
S=ah÷2、平行四边形
?
=
?
?
S=ah、梯形
?
=
(
?
+
?
)
?
÷
2
S=(a+b)h÷2等面积公式后,在实际应用中可能会混淆这些公式。例如在计算三角形面积时忘记除以2,或者在计算梯形面积时把上底和下底相加后没有乘以高就直接除以2。
等积变形理解困难
对于像两个完全一样的梯形可以拼成一个平行四边形这种等积变形的情况,学生可能理解不到位。在涉及到利用等积变形来解决实际问题时,如通过将不规则图形转化为规则图形来计算面积时,可能无法准确找到转化的方法,从而导致面积计算错误。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:讷讷寡言者未必愚,喋喋利口者未必智。禅城中考辅导。!。
禅城中考辅导。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:你要知道,你拥有的,就是最好的。不是因为一件东西好,你才千方百计去拥有它。而是因为你已拥有了它,才一心一意觉得它最好。。小学数学思维导图制作技巧
确定中心主题
首先,需要确定一个中心主题,这是制作思维导图的目的和方向。对于小学数学来说,中心主题可以是一个数学概念、一个数学问题或者是某个数学章节的标题。这个中心主题应该能够概括整个思维导图的主要内容。
选择合适的制作工具
选择一个适合自己的思维导图制作工具是非常重要的。可以使用在线工具,如“知犀思维导图”,它提供了多种思维导图结构和模板,便于在线使用和分享。此外,也可以使用专门的思维导图软件,如MindManager等,这些软件通常提供丰富的图形、样式和模板,可以帮助制作出美观且专业的思维导图。
延伸分支
将相关子主题或子概念按顺序或联系添加为小节点。这些子主题或子概念应该是与中心主题相关的其他概念或想法。可以将它们组织为层次清晰的结构,来使思维导图的整体更加直观。
使用颜色和图片
使用颜色、形状和图片图标来区分不同类型的节点。这可以使得思维导图作品更加美观,信息也更加具有可读性。颜色可以帮助记忆和区分不同的概念,而图片则可以增加思维导图的趣味性和吸引力。
引用小工具
可以使用备注、关联线、概要、公式、附件、表格、双向链接等小工具来帮助解释各个节点之间的联系和概念。这可以让各个节点的内容更加明确,让读者也能更深入的了解每个节点存在的重要意义。
实际操作步骤
确定中心主题:首先确定小学数学思维导图的中心主题,比如“分数”。
选择制作工具:选择一个适合的工具,如“知犀思维导图”或“迅捷画图”。
延伸分支:从中心主题出发,添加如“分数的基本概念”、“分数的加减法”、“分数的应用”等子主题。
使用颜色和图片:为不同的分支选择不同的颜色,使用图片来解释复杂的概念。
引用小工具:在适当的地方添加备注、关联线等,帮助解释各个节点之间的联系。
通过上述步骤和技巧,可以制作出既美观又富有教育意义的小学数学思维导图,帮助学生更好地理解和掌握数学知识。禅城中考辅导。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:岂能尽人如意,但求无愧于心!禅城中考辅导。!。