咨询热线 400-6169-615
2025-05-17 06:00:38|已浏览:435次
南海高二历史个性化培训。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:在你困苦的时候,不离不弃是雪中送炭。在你安定的时候,不离不弃是心心相惜。在你得意的时候,不离不弃是锦上添花。南海高二历史个性化培训。!。

南海高二历史个性化培训。!学大教育在线高一数学辅导班|线上一对一辅导
【高一数学一对一】课程简介
1、高一全科辅导,由多年经验丰富的导师亲授指点,巩固学科内容,;
2、针对孩子学习特点及性格特点制作讲义,针对性强,便于接受;
3. 大数据评测学科盲点,个性化1对1辅导方案,夯实基础,;
4、辅导计划增加五大基础巩固计划,计划性帮助学生持续进步。
【高一数学一对一】课程亮点
1、1v1个性化辅导,小班制辅导更细致;
2、多位一体化服务,助教1对1跟进学习提醒互动答疑,因材施教,个性教学小班;
3、直击应试,教授展掌握应试技巧,考试干货,持续进步,
4、易混考试要点预测,剖析考题,学生易错纠正;
5、先试听再定课,试听限量抢!
【高一数学一对一】课程目标
扎实应有基础的同时,扩充其知识面,在轻松愉快的氛围中延续学习兴趣,全面掌握应试能力,总结学习规律。
同步巩固校内课程基础,渗透趣味性较强,易学易懂的课外数学知识,起到加强基础,开拓视野,增强兴趣。
对知识达到熟练运用级别,能够使用课程教授的解题方法在期中期末考试中取得优异的成绩。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:我一直很清醒,清醒地看着自己的沉沦。南海高二历史个性化培训。!。

南海高二历史个性化培训。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:渐渐的,打动我们的不再是那句“我爱你”,而是一句“我陪你”。爱情不是终点,陪伴才是归宿。。除法应用题中的数学思维培养
一、通过理解除法概念培养数学思维
概念理解是基础
在除法应用题中,首先要让学生深刻理解除法的基本概念。除法是平均分的概念体现,例如将一定数量的物品平均分成若干份,求每份是多少,或者是已知总数和每份的数量,求能分成多少份。例如在整数除法应用题中,如果有10个苹果,要平均分给5个小朋友,问每个小朋友能得到几个苹果,这就是典型的平均分问题,需要用除法计算:
10
÷
5
=
2
10÷5=2(个),通过这样简单的实例,让学生理解除法是解决平均分问题的运算方式,这是培养数学思维的基础步骤。
余数概念的深化
当涉及有余除法时,余数概念的理解更为关键。在有余除法应用题中,如将20个糖果分给3个小朋友,
20
÷
3
=
6
?
?
2
20÷3=6??2,这里的余数2表示分完后剩余的糖果数量。要让学生明白余数是在平均分过程中不能再继续平均分的部分,并且余数一定小于除数。通过这样的实例分析,能让学生在解决有余除法应用题时,准确把握计算结果的意义,进一步培养严谨的数学思维。
二、从分析问题角度培养数学思维
找出关键信息
在除法应用题中,要引导学生学会找出关键信息。比如在分数除法应用题中,确定“整体1”就是关键信息。例如“某班男生人数是女生人数的
3
4
4
3
?
,已知女生有20人,求男生人数”,这里女生人数就是“整体1”。根据“知1求几用乘法”,男生人数为
20
×
3
4
=
15
20×
4
3
?
=15人;如果是“某班男生人数是女生人数的
3
4
4
3
?
,已知男生有15人,求女生人数”,这里就是“知几求1用除法”,女生人数为
15
÷
3
4
=
20
15÷
4
3
?
=20人。通过这样的分析,让学生学会在题目中寻找关键信息来确定解题方法,培养逻辑思维能力。
分析数量关系
教导学生分析题目中的数量关系是培养数学思维的重要环节。对于除法应用题,要明确被除数、除数和商在具体情境中的意义以及它们之间的关系。例如在行程问题中的除法应用:一辆汽车3小时行驶了180千米,求平均每小时行驶多少千米?这里路程180千米是被除数,表示总数;时间3小时是除数,表示份数;速度(每小时行驶的千米数)是商。通过路程÷时间 = 速度这个数量关系来解题,即
180
÷
3
=
60
180÷3=60(千米/小时)。让学生通过分析不同类型应用题中的数量关系,建立起数学模型,提高解决问题的能力。
三、借助解题步骤培养数学思维
建立解题步骤
读题:认真阅读题目,这是解决任何应用题的第一步。学生需要理解题目的意思,明确题目所描述的情境和要求。
勾划关键内容:
划出条件:用横线划出题目中给出的已知条件,如数字、数量关系等。
圈出问题:明确题目最终要求解的问题。
标记单位:点出每个数量的单位,确保单位的一致性在除法计算中的正确性。
找出关键词:如“平均分”“每”“一共”等,这些关键词能帮助确定解题思路。例如在“把30个苹果平均分到5个篮子里,每个篮子里有几个苹果?”中,“平均分”“每个”就是关键词。
写算式、单位和答语:根据分析得出的数量关系写出正确的除法算式,写上单位,最后写出完整的答语。例如上述苹果问题,算式为
30
÷
5
=
6
30÷5=6(个),答语为“每个篮子里有6个苹果”。通过这样规范的解题步骤,让学生养成良好的解题习惯,有助于培养有序的数学思维。
四、通过对比和拓展培养数学思维
对比相似题型
将相似的除法应用题进行对比,能让学生更清晰地理解不同题型之间的差异和联系。例如将简单的整数除法应用题和分数除法应用题进行对比。“有12个苹果,平均分给4个小朋友,每个小朋友分几个?”(整数除法)和“有12个苹果,每个小朋友分
1
4
4
1
?
,可以分给几个小朋友?”(分数除法)。通过对比,让学生发现虽然都是关于苹果分配的问题,但由于分法的描述不同,解题方法也有所区别,从而加深对除法概念的理解和应用,提升数学思维的灵活性。
拓展思维深度
在学生掌握了基本的除法应用题解法后,可以通过拓展题目内容来加深思维深度。比如从简单的一步除法应用题拓展到两步甚至多步的除法应用题。“一个工厂3天生产了180个零件,照这样计算,生产900个零件需要多少天?”这就需要先求出每天生产的零件数(
180
÷
3
=
60
180÷3=60个),再用总零件数除以每天生产的零件数得到需要的天数(
900
÷
60
=
15
900÷60=15天)。通过这样的拓展练习,让学生学会在复杂的情境中运用除法解决问题,培养综合运用知识的能力和深入思考的数学思维。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:不要和不懂你的人在一起,与其被烂人挑毛病,还不如慢慢等懂你的人出现吧。南海高二历史个性化培训。!。

南海高二历史个性化培训。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:有一些人,他们赤脚在你生命中走过,眉眼带笑,不短暂,也不漫长。却足以让你体会幸福,领略痛楚,回忆一生。。四年级数学竞赛题目解析
一、小数相关题目解析
(一)数位与计数单位
例如:在“一粒黄豆约重0.35克,0.35中的5在()位上,表示()个()”这类题目中,
0.35中的5在百分位上,因为小数点后第一位是十分位,第二位是百分位。它表示5个百分之一。这是根据小数的数位顺序表得出的,小数点后第一位的计数单位是十分之一,第二位是百分之一,以此类推。
(二)小数的组成
例如:“一只蝙蝠约重3.9克,3.9里面有()个0.1”,
3.9÷0.1 = 39,所以3.9里面有39个0.1。这是根据除法的意义,求一个数里面包含几个另一个数用除法计算。
(三)小数的扩大与缩小
例如:“()扩大到原来的100倍是21.8”,
求原数就用21.8÷100 = 0.218。因为一个数扩大100倍得到21.8,那么原数就是21.8缩小100倍的结果。
(四)循环小数
例如:“7.49898……是一个()小数,可以记作(),保留一位小数是()”,
这是一个循环小数,因为小数部分98无限循环。可以记作
7.4
9
˙
8
˙
7.4
9
˙
8
˙
。保留一位小数时,看小数点后第二位是9,根据四舍五入,向前进一位,所以保留一位小数是7.5。
二、数的运算相关题目解析
(一)四则运算
直接写出得数类型:
如“13.4 - 8 = 5.4”,这是简单的小数减法运算,直接对齐小数点相减即可。
“5.6+4 = 9.6”是小数加法,同样对齐小数点相加。
“23 + 4.7 = 27.7”是整数与小数相加,将整数部分和小数部分分别相加。
“10 - 2.3 = 7.7”是整数减小数,注意借位。
“7.5×4 = 30”是小数乘法,按照整数乘法计算后,再确定小数点的位置。
“2.3×4×0 = 0”,因为任何数乘以0都得0。
“16÷32 = 0.5”是整数除法。
“3.5÷5 = 0.7”是小数除法。
“0.6 - 0.23 = 0.37”是小数减法。
“0.55+0.45 = 1”是小数加法。
“0.06×0.7 = 0.042”是小数乘法,先按照整数乘法算出6×7 = 42,再看因数中一共有三位小数,从积的右边起数出三位点上小数点。
“0.125×80 = 10”是小数乘法,先算125×8 = 1000,再根据因数中小数的位数确定积的小数点位置,这里因数共有三位小数,但80末尾有一个0,所以结果是10。
简便运算类型:
例如“0.125×4.78×80”,
可以利用乘法交换律和结合律,先算0.125×80 = 10,再乘以4.78得到47.8。因为0.125和80相乘可以得到整数10,这样计算更简便。
对于“2.8×3.6+1.4×2.8”,
利用乘法分配律,提出公因式2.8,得到2.8×(3.6 + 1.4)=2.8×5 = 14。
在“(0.4 + 40)×2.5”中,
同样利用乘法分配律,得到0.4×2.5+40×2.5 = 1+100 = 101。
对于“78.7 - 17.7×3.6”,
按照先乘除后加减的顺序,先算17.7×3.6 = 63.72,再用78.7 - 63.72 = 14.98。
在“18÷[0.3×(8 - 6.5)]”中,
先算小括号里的8 - 6.5 = 1.5,再算0.3×1.5 = 0.45,最后算18÷0.45 = 40。
解方程类型:
例如“5.34+X = 30.6”,
根据等式的性质,方程两边同时减去5.34,得到X = 30.6 - 5.34 = 25.26。
对于“7X = 17.5”,
方程两边同时除以7,得到X = 17.5÷7 = 2.5。
三、单位换算题目解析
(一)人民币单位换算
例如:“5元9角=()元”,
因为1角 = 0.1元,所以9角 = 0.9元,5元9角 = 5.9元。
(二)时间单位换算
例如:“0.6时=()分”,
因为1时 = 60分,所以0.6×60 = 36分。
(三)质量单位换算
例如:“8千克10克=()千克”,
因为1克 = 0.001千克,所以10克 = 0.01千克,8千克10克 = 8.01千克。
(四)长度单位换算
例如:“5.2米=()米()厘米”,
因为1米 = 100厘米,0.2×100 = 20厘米,所以5.2米 = 5米20厘米。
四、比较大小题目解析
(一)小数乘法比较
例如:“4.72×0.99()4.72”,
一个数乘以小于1的数,积比原数小,0.99小于1,所以4.72×0.99<4.72。
对于“5.43×0.82()0.82”,
一个数乘以大于1的数,积比原数大,5.43大于1,所以5.43×0.82>0.82。
(二)除法比较
例如:“117÷1.3()117”,
一个数除以大于1的数,商比原数小,1.3大于1,所以117÷1.3<117。
对于“3.14×1.5()31.4×0.15”,
根据积的变化规律,3.14×1.5 = 3.14×10×0.15 = 31.4×0.15,所以3.14×1.5 = 31.4×0.15。
五、三角形相关题目解析
(一)三角形内角和
例如:“三角形ABC中,∠A = 25°,∠B = 55°,∠C=(),这是一个()三角形”,
根据三角形内角和为180°,∠C = 180°- 25°- 55° = 100°。因为∠C大于90°,所以这是一个钝角三角形。
六、组合问题(如三角形三边关系)
(一)三角形三边关系判断
例如:“在下面线段中,用第()、第()和第()可以围成一个三角形。①1cm②2cm③3cm④4cm”,
根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边。可以选择②3cm、③4cm、④2cm,因为2 + 3>4,3 + 4>2,2 + 4>3,同时满足4 - 3<2,4 - 2<3,3 - 2<4。
七、逻辑判断题目解析
(一)小数点性质判断
例如:“小数点的后面添上或者去掉0,小数的大小不变。()”,
这种说法是错误的。应该是小数的末尾添上或去掉0,小数的大小不变,例如1.02和1.2大小是不同的。
(二)除法商不变规律判断
例如:“2.4÷3 = 0.8,如果被除数和除数同时乘3,则商为2.4。()”,
这种说法错误。根据商不变规律,被除数和除数同时乘或除以相同的数(0除外),商不变,所以商还是0.8。
(三)乘法意义判断
例如:“a2=a + a。()”,
这种说法错误。a2表示a乘以a,而a + a = 2a,两者意义不同,例如当a = 3时,32=9,而3+3 = 6。
(四)特殊四边形关系判断
例如:“正方形和长方形都是特殊的平行四边形。()”,
这种说法正确。因为正方形和长方形都满足平行四边形的两组对边分别平行且相等的性质,同时它们又各自具有特殊的性质,如正方形四条边相等且四个角都是直角,长方形四个角都是直角。
(五)三角形直角数量判断
例如:“一个三角形中最多有一个直角。()”,
这种说法正确。因为三角形内角和为180°,如果有两个或三个直角,内角和就会超过180°。
八、方程相关题目解析
(一)方程的定义判断
例如:“下面式子中是方程的是()。A、4x+3.2 B、3x = 0 C、3x - 0.51”,
方程是含有未知数的等式,A选项4x+3.2不是等式,C选项3x - 0.51不是等式,只有B选项3x = 0是含有未知数x的等式,所以答案是B。
九、应用题相关题目解析
(一)行程问题中的费用计算
例如:“李老师带着5名学生去上海,单程票价每人146.5元,儿童半价,往返交通费要用多少钱?”
首先,儿童票单价为146.5÷2 = 73.25元。5名学生的单程费用为5×73.25 = 366.25元,李老师的单程费用为146.5元,那么单程总费用为366.25+146.5 = 512.75元。往返的交通费就是512.75×2 = 1025.5元。
(二)年龄问题列方程求解
例如:“妈妈和小红今年各多少岁?(用方程解)”
设小红今年x岁,因为爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍,可列出方程5x - x = 24,解得x = 6岁,那么爸爸的年龄是5×6 = 30岁。如果再设妈妈年龄为y岁,根据其他条件建立方程求解(由于原题目信息不全,这里只给出一般的解题思路)。
(三)货币换算后的价格比较
例如:“下面的娃娃哪种最贵?哪种最便宜?20.2美元、18欧元、800泰铢。1美元兑换人民币7.00元,1欧元兑换人民币11.05元”
20.2美元换算成人民币为20.2×7 = 141.4元,18欧元换算成人民币为18×11.05 = 198.9元,800泰铢换算成人民币为(由于没有给出泰铢兑换人民币的汇率,这里假设1元人民币 = 5泰铢)800÷5 = 160元。通过比较198.9>160>141.4,所以18欧元的娃娃最贵,20.2美元的娃娃最便宜(这里汇率假设只是为了演示解题过程,实际情况需根据准确汇率计算)。
(四)不同促销方案下的价格比较
例如:“乐乐超市开展促销活动,买一箱牛奶(24盒)44元,还送一盒;同样的牛奶,咪咪超市的促销方法是5盒9.40元。”
乐乐超市买24盒送1盒相当于44元买25盒,每盒价格为44÷25 = 1.76元。咪咪超市每盒价格为9.4÷5 = 1.88元。通过比较1.76<1.88,所以乐乐超市的牛奶更便宜(这里只比较了单位价格,实际购买时还可能考虑其他因素)。
(五)家庭装修公司选择中的合算性比较
例如:“小华家的阳台要重新铺地板砖,有两家装修水平差不多的公司,你认为选哪家比较合算?”
这需要根据两家公司的报价、材料、施工面积等具体信息进行计算比较。比如一家公司按照每平方米x元收费,另一家按照总价y元收费,需要计算出在小华家阳台面积为z平方米的情况下,两家公司的费用分别是多少,再进行比较(由于原题目没有给出具体的报价信息,这里只给出一般的解题思路)。南海高二历史个性化培训。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:他怀着一种创造性的情感将自己全身心地投入到它的中间,不断地为它增添内容,用飘浮到他路上的每一根漂亮羽毛去装扮它。有谁知道在一个人的波诡云谲的心里,能蓄下多少火一样的激情和新鲜的念头。《了不起的盖茨比》南海高二历史个性化培训。!。
