花都新初一培训学校。花都新初一培训学校。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:如果没人护你周全,那就酷到没有软肋,你那么棒不能毁在感情上。。
大家好,今天推荐小学文化课辅导班。
孩子学习有困难?找我们!
专业老师授课,效果看得见。
语文、数学、英语全覆盖。
小班教学,关注每个孩子。
个性化辅导,因材施教。
丰富的教学资源,孩子爱学。
科学的课程安排,学习更高效。
随时答疑解惑,家长更省心。
全面提升孩子学习成绩。
助力孩子赢在起跑线。花都新初一培训学校。
让孩子爱上学习,从此不怕考试。
报名即送学习资料大礼包。
家长放心,孩子开心。
快来加入我们吧,名额有限。
小学文化课辅导班,您的最佳选择。花都新初一培训学校。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:不要拿着别人的地图,找自己的路。。

花都新初一培训学校。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:人生就像打电话,不是你先挂,就是我先挂。几何题型中的常见错误分析
一、解析几何中的常见错误
(一)忽视斜率不存在的情况
在解析几何中,当涉及直线与曲线相交的问题时,若设直线方程为点斜式
?
=
?
(
?
?
?
0
)
+
?
0
y=k(x?x
0
?
)+y
0
?
,就需要考虑斜率
?
k不存在的情况。例如:已知过点
(
?
4
,
0
)
(?4,0)作直线
?
l与圆
?
2
+
?
2
+
2
?
?
4
?
?
20
=
0
x
2
+y
2
+2x?4y?20=0交于
?
A、
?
B点,弦
?
?
AB长为
8
8。如果直接设直线
?
l的方程为
?
=
?
(
?
+
4
)
y=k(x+4)(点斜式),然后进行计算,就未考虑直线
?
l斜率不存在情况,从而导致错误。实际上,当直线
?
l斜率不存在时,直线
?
l的方程为
?
=
?
4
x=?4,此时弦
?
?
AB长也为
8
8,这是符合题意的解
1
1()。
(二)忽视方程本身限制
截距式方程的限制
对于直线方程的截距式
?
?
+
?
?
=
1
a
x
?
+
b
y
?
=1,其使用条件是
?
≠
0
a
=0且
?
≠
0
b
=0。例如:直线
?
l经过
?
(
2
,
3
)
P(2,3),且在
?
x,
?
y轴上的截距相等。如果直接设直线方程为
?
?
+
?
?
=
1
a
x
?
+
a
y
?
=1(截距式),又过
?
(
2
,
3
)
P(2,3),得出
2
?
+
3
?
=
1
a
2
?
+
a
3
?
=1,求得
?
=
5
a=5,得到直线方程为
?
+
?
?
5
=
0
x+y?5=0,这就忽视了直线过原点(
?
=
?
=
0
a=b=0)的情况。当直线过
(
0
,
0
)
(0,0)时,此时斜率为
?
=
3
?
0
2
?
0
=
3
2
k=
2?0
3?0
?
=
2
3
?
,直线方程为
?
=
3
2
?
y=
2
3
?
x。综上,所求直线方程为
?
=
3
2
?
y=
2
3
?
x或$x + y - 5 = 0$$$1$$()。
(三)忽视题目隐含条件
轨迹方程中的隐含条件
在求轨迹方程时,求出方程后要考虑轨迹上的点是否都符合题意。例如在
△
?
?
?
△ABC中,
?
?
=
8
BC=8,另两边长之差为
6
6,求顶点
?
A的轨迹方程。以
?
?
BC所在直线为
?
x轴,
?
?
BC的中点为坐标原点建立直角坐标系,因为
?
?
BC是定值,点
?
A的轨迹是以
?
B、
?
C为焦点的双曲线,由已知得
?
=
3
a=3,
?
=
4
c=4,
?
2
=
?
2
?
?
2
=
7
b
2
=c
2
?a
2
=7。但由于
?
A、
?
B、
?
C为三角形的三个顶点,即
?
A、
?
B、
?
C三点不能共线,所以点
?
A不能落在
?
x轴上,其轨迹方程为
?
2
9
?
?
2
7
=
1
(
?
≠
0
)
9
x
2
?
?
7
y
2
?
=1(y
=0),如果不考虑这个隐含条件就会导致结果错误
1
1()。
(四)忽视曲线本身范围的限制
椭圆上点的范围限制
例如设椭圆的中心是坐标原点,求椭圆方程。设椭圆上的点
(
?
,
?
)
(x,y)到某点
?
P的距离为
?
d,依题意可设椭圆方程为
?
2
?
2
+
?
2
?
2
=
1
a
2
x
2
?
+
b
2
y
2
?
=1,然后根据距离公式求
?
d关于
?
x、
?
y的表达式,再求
?
d的最值来确定
?
a、
?
b的值。在求最值过程中,如果不考虑
?
y的取值范围(
?
?
≤
?
≤
?
?b≤y≤b)就会出错。比如直接由当
?
=
?
y=b时
?
2
d
2
有最大值这步推理是错误的,因为没有考虑到
?
y的取值范围。应分类讨论,根据椭圆上点的范围限制来准确求最值从而确定椭圆方程
1
1()。
二、几何证明题中的常见错误
(一)偷换概念
在证明平行关系中的偷换概念
在几何证明中,把不属于某一概念外延的事物误认为属于这一概念,从而得出错误的证明。例如:已知
?
?
∥
?
?
AB∥CD,
?
?
MG、
?
?
HN分别为
∠
?
?
?
∠EGA、
∠
?
?
?
∠EHC的平分线,求证
?
?
∥
?
?
GM∥HN。错证:因为
?
?
∥
?
?
AB∥CD所以
∠
?
?
?
=
∠
?
?
?
∠EGA=∠EHC,又
?
?
MG、
?
?
HN分别为
∠
?
?
?
∠EGA、
∠
?
?
?
∠EHC的平分线,所以
∠
?
?
?
=
∠
?
?
?
∠MGA=∠NHC(这里把
∠
?
?
?
∠MGA、
∠
?
?
?
∠NHC当成
?
?
GM、
?
?
NH被
?
?
EF所截得的同位角),得出
?
?
∥
?
?
GM∥HN。正确的证法是把上面证法中“
∠
?
?
?
=
∠
?
?
?
∠MGA=∠NHC”换成“
∠
?
?
?
=
∠
?
?
?
∠MGE=∠NHE”即可
4
4()。
在相似三角形证明中的偷换概念
例如在梯形
?
?
?
?
ABCD中,
?
?
∥
?
?
AD∥BC,两对角线交于
?
O,过
?
O作
?
?
∥
?
?
EF∥BC,分别交
?
?
AB、
?
?
CD于
?
E、
?
F,求证
?
?
=
?
?
OE=OF。错证:因为
?
?
∥
?
?
∥
?
?
EF∥BC∥AD,所以
△
?
?
?
~
△
?
?
?
△AOE~△ACB,
△
?
?
?
~
△
?
?
?
△DOF~△DBC,然后根据相似三角形的对应边成比例得出错误结论。实际上这里是把不是相似三角形对应边的线段当成对应边了,犯了偷换概念的错误。正确的证法是根据相似三角形的正确对应边成比例关系来证明
4
4()。
(二)虚假理由
错误运用定理
有些学生对有关的概念、定理没有真正的理解掌握,在证明时任意推广引申定理得出有利于论题成立的假判断作为论证的根据。例如:已知
△
?
?
?
△ABC中,
?
?
=
?
?
AB=AC,
?
?
AD为
∠
?
∠A的平分线,
?
?
⊥
?
?
DE⊥AB,
?
?
⊥
?
?
DF⊥AC垂足分别为
?
E、
?
F,求证
?
?
AD为
?
?
EF的中垂线。错证:因为
?
?
AD为
∠
?
∠A的平分线,
?
?
⊥
?
?
DE⊥AB,
?
?
⊥
?
?
DF⊥AC,所以
?
?
=
?
?
DE=DF(角平分线上的点到角两边的距离相等),然后得出
?
?
AD为
?
?
EF的中垂线(到线段两个端点距离相等的点在线段的垂直平分线上)。但由
?
?
=
?
?
DE=DF只可能推出
?
D为
?
?
EF的中垂线上的点,而过点
?
D的直线有无数条,故不能说明
?
?
AD为
?
?
EF的中垂线,犯了虚假理由的错误
4
4()。
三、小学数学几何初步知识中的常见错误
(一)概念不清
圆的对称轴概念
在涉及圆和扇形的题目中,会因概念不清导致错误。例如对圆的对称轴概念理解错误,认为圆的对称轴只有一条,就是那条把圆分成相等的两个半圆的直径,实际上任何一条直径都是圆的对称轴
2
2()。
(二)公式混淆
图形面积周长相关公式
在计算正方形、长方形、圆形的面积时,可能会混淆公式。例如用一根长
3.14
3.14米的绳子围成一个正方形、长方形、圆形,求它们中面积最大的图形。可能会误认为正方形面积最大,这可能是受一些直观图形的影响,而实际上通过计算会发现圆的面积最大
2
2()。
(三)单位进率不清楚
扇形圆心角与面积相关计算中的单位进率问题
在扇形的相关计算中,可能会因为单位进率不清楚而导致错误,例如在计算扇形面积时,如果涉及到角度与弧度的转换或者是对扇形占圆面积比例的计算时,单位进率不清楚就会得出错误结果。不过文档未给出具体例子
2
2()。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:人总爱跟别人比较,看看有谁比自己好,又有谁比不上自己。而其实,为你的烦恼和忧伤垫底的,从来不是别人的不幸和痛苦,而是你自己的态度。花都新初一培训学校。