咨询热线 400-6169-615
2025-05-17 23:21:11|已浏览:182次
黄埔高三政治个性化培训。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:世上有一条唯一的路,除你之外无人能走。它通往何方?不要问,走便是了。黄埔高三政治个性化培训。。
黄埔高三政治个性化培训。图示法在数学教学中的应用案例
一、利用图示创建学习线索
垂线学习情境的创设
在垂线教学中,可以利用简易单摆摆线和水平线之间的位置关系来创建学习情境。摆线与水平线在运动过程中是相交的,当摆线静止时二者垂直,这一图形蕴含着垂直与相交的“特殊与一般”关系,摆线静止位置唯一体现垂线的唯一性,观察摆线被水平线截得的线段长度变化能直观看到垂线段的最短性。以此为线索引导学生开展观察、测量、表征等认知活动,能让教学活动更有条理、可视化、系统性,促使学生自然发现垂线模型及其属性。
矩形教学中的应用
在矩形教学中,同样可以创建图示情境。利用图形引导学生自然合理地抽象出数学概念,并提出矩形性质的猜想。通过变化的图形成立学生已有知识经验与当前学习任务的联系,让课堂学习建立在先前学习经验的基础上,起到承前启后的作用,为学生的课堂探究活动提供方向性启发。
二、利用图示揭示概念的本质属性以及概念之间的联系
反比例函数概念教学
在反比例函数概念教学中,利用面积不变和一组邻边长变化的动态图形演示,让学生看到变量的变化过程。再把矩形放到平面直角坐标系中,使学生看到两个变量之间的数量对应关系。这为学生类比正比例函数抽象出反比例函数概念提供了典型模型,还能有效地构建抽象函数概念与具体情境中函数关系的联系。并且利用变化的矩形作为典型模型,通过对边长、面积的度量属性赋予意义,能够为揭示函数、方程、不等式等数学概念的本质属性提供视觉经验支撑。例如,矩形周长不变、邻边变化时,邻边关系是一次函数关系;面积不变、邻边变化时,邻边关系是反比例函数关系;周长不变,一边长和面积变化时,面积与边长的对应关系是二次函数关系,对这些函数设置临界值,就变为相应的方程和不等式有关问题。
三、利用图示表示认知操作的过程
平面几何图形研究
在平面几何图形(如平行线、全等(相似)三角形、平行四边形、圆等)基本性质的研究中,其程序为“下定义——探性质——研判断”。以平行四边形为例,利用图形剖分思想研究平行四边形的性质时,可以用图示的方法来表示。这有助于学生在回顾总结和反思中发展数学元认知水平,促使数学策略性知识的优化和发展。通过这种方式可以让学生掌握平面基本图形性质的研究内容和研究方法,在后继学习中能在认知活动线索的引导下合理提出和解决问题,明确认知操作的基本方向。
数学综合性问题解决
在数学综合性问题解决中,由于问题复杂可能导致思考步骤增多、分支多,占用大量工作记忆容量。在分析解决问题思路的过程中,用适当的图示简洁地记录自己的思考过程,这样不仅能节省工作记忆的空间,还可以方便学生进行思路回顾、评价和反思。在思考过程中通过“目标/现状”自我评价能够及时调整思路,提高数学问题解决的效率,发展分析问题和解决问题的能力。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:美好是一种执念,我坚持,你随意。黄埔高三政治个性化培训。。
黄埔高三政治个性化培训。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:没有方向的船,不论从何向吹来的风都是逆风。。五年级数学竞赛解题技巧
一、基本思想方法
对应思想方法:对应是对两个集合因素间联系的一种思想方法,在小学数学里多是一一对应的直观图表,这也孕伏着函数思想,例如直线上的点(数轴)和表示的具体数就是一一对应关系。
假设思想方法:先对题目中的已知条件或者问题作出某种假设,接着依据题中的已知条件去推算,根据出现的数量矛盾加以适当调整,从而找到正确答案。这种思想方法是有意义的想象思维,掌握后可让问题更形象具体,丰富解题思路。
比较思想方法:这是数学中常见的思想方法,也是促进学生思维发展的手段。在分数应用题教学中,教师引导学生比较题中已知和未知数量变化前后的情况,有助于快速找到解题途径。
符号化思想方法:用符号化的语言(像字母、数字、图形和各种特定符号)描述数学内容,例如数学里的各种数量关系、量的变化以及量与量之间的推导和演算,都能用字母表示数,以符号的浓缩形式传达大量信息,如定律、公式等。
类比思想方法:依据两类数学对象的相似性,把已知的一类数学对象的性质迁移到另一类数学对象上。例如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式之间的类比。
转化思想方法:由一种形式变换成另一种形式的思想方法,其本身大小不变。如几何中的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙 = 甲×1/乙这种转化。
分类思想方法:对数学对象进行分类及其确定分类标准。例如自然数按能否被2整除分奇数和偶数;按约数个数分质数和合数。三角形按边或按角分等,不同分类标准有不同结果,有助于学生梳理和建构知识。
集合思想方法:运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题。小学常用直观手段,利用图形和实物渗透集合思想,如讲述公约数和公倍数时采用交集的思想方法。
数形结合思想方法:数和形是数学研究的两大对象,二者相互依存。一方面抽象的数学概念、复杂的数量关系可借助图形直观化、形象化、简单化;另一方面复杂的形体能用简单的数量关系表示,解应用题时经常借助线段图分析数量关系。
统计思想方法:小学数学中的统计图表是基本的统计方法,求平均数应用题体现出数据处理的思想方法。
极限思想方法:事物从量变到质变,极限方法实质是通过量变的无限过程达到质变。比如讲“圆的面积和周长”时,“化圆为方”“化曲为直”的极限分割思路,在有限分割基础上想象极限状态,不仅能让学生掌握公式,还能萌发无限逼近的极限思想。
代换思想方法:是方程解法的重要原理,解题时可将某个条件用别的条件代换。例如学校买4张桌子和9把椅子共用504元,一张桌子和3把椅子价钱相等,就可利用代换思想求出桌子和椅子的单价。
可逆思想方法:逻辑思维中的基本思想,当顺向思维难以解答时,可从条件或问题逆向寻求解题思路,有时可借助线段图逆推。例如汽车从甲地开往乙地,第一小时行全程的1/7,第二小时比第一小时多行16千米,还有94千米,可利用可逆思想求甲乙距离。
化归思维方法:把可能解决或未解决的问题,通过转化归结为能解决或较易解决的问题来求解。由于数学知识联系紧密,新知识是旧知识的引申和扩展,学生用化归思想思考问题有助于提高独立获取新知的能力。
变中抓不变的思想方法:在复杂变化中把握数量关系,以不变量为突破口,往往能使问题迎刃而解。
二、解题策略
瞻前顾后:解题时不能只满足于一种答案,要考虑多种情况。例如有些行程问题可能存在相遇后又多行一段距离的情况,这时候两地距离就需要根据不同情况来计算,要避免只求出一种情况就停止思考。
看清审题与解题:
耐心仔细审题,准确把握题目中的关键词与量,如“至少”“0”“自变量的取值范围”等,从中获取尽可能多的信息,这样才能迅速找准解题方向。有些考生不重视审题,匆匆一看就下笔,导致题目条件和要求没吃透,更无法挖掘隐含条件、启发解题思路,出错自然就多。
在解题时要利用好“快”与“准”的关系,只有准确才能更好地解题,不能只追求速度而忽略准确性。
根据题目情况灵活选择解法:
在解应用题时能根据具体情况灵活选用算术解法或方程解法,分析题目中数量关系的特点,恰当地选择解题方法。例如在一些数量关系较为简单直接的题目中,算术解法可能更简便;而在数量关系复杂,存在多个未知量且等量关系明显的题目中,方程解法可能更合适。
奥数解题中也有多种特殊方法可以根据题目类型选择:
直观画图法:解奥数题时,合理、科学、巧妙地借助点、线、面、图、表将奥数问题直观形象地展示出来,把抽象的数量关系形象化,有助于同学们搞清数量关系,沟通“已知”与“未知”的联系,抓住问题本质迅速解题。
倒推法:从题目所述的最后结果出发,利用已知条件一步一步向前倒推,直到题目中问题得到解决。
枚举法:当奥数题中情况不是很多时,可以采用枚举法,将所有可能的情况一一列举出来,再进行分析和解答。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:世上有一条唯一的路,除你之外无人能走。它通往何方?不要问,走便是了。黄埔高三政治个性化培训。。
黄埔高三政治个性化培训。。广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:一直以为会天荒地老,却在半路就分道扬镳。。高一历史一对一个性化辅导课程
【课程简介】
1、历史课程短期、长期集中培训,精准试题测试,课后精准解答;
2、经验老师传授技巧,不背书照样考高分
3、侧重学习能力的整体进步,精讲精练+查漏补缺;
4、1v1定制辅导,1v4互动辅导,精品小班,多种班型,保障学生短时间出效果。
【课程亮点】
1、课程全面辅导,深入浅出化教学;
2、多年教学经历师资教学,导师深入辅导,因材施教; 熟悉应试数学发展方向及应试趋势。
3、老师干货分享,技巧教授,深入掌握课程内容;
4、1v1个性辅导,1v4互动辅导,精品小班制辅导更细致;
5、导师亲授指点,巩固学科内容,达到理想学习效果。
【课程大纲】
基础
1.激发学习动机
2.培养学习兴趣
3.梳理基础知识
4.基础题训练
进阶
1.古代史知识体系构建
2.近代史知识体系构建
3.现代史知识体系构建
4.培养历史学科素养
规范
1.基础知识基本能力评估
2.查漏补缺,建立错误档案
3.纠错补偿,弱项专训
4.思维导图,构建知识网络
点拨
1.材料解读能力培养
2.获取正确结论能力培养
3.失误深度剖析
巩固
1.阶段性试题训练
2.知识能力漏洞修复
3.思维视角拓展
4.主观题不失
黄埔高三政治个性化培训。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:接受了最坏的结果后,我们就不会再损失什么了,这就意味着失去的一切都有希望回来了。黄埔高三政治个性化培训。。