欢迎来到三人行教育网,代理招生网站!

全国切换城市

咨询热线 400-6169-615

位置:三人行教育网,代理招生网站 > 新闻资讯 > 教育新闻 > 教育要闻 >  南沙新高二补习。

南沙新高二补习。

来源:三人行教育网,代理招生网站

2025-05-18 01:58:34|已浏览:187次

南沙新高二补习。

南沙新高二补习。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:成长,带走的不只是时光,还带走了当初那些不害怕失去的勇气。南沙新高二补习。。中小学教育—个性化一对一辅导教育品牌!


教育品牌 特色服务 教育经验 覆盖城市 骨干教师 受益学生 中小学教育全日制课程 特色课程Special course 个性化学习 / 个性化小组课 全国免费咨询热线400-6169-615.

广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:爱上一个人不需要靠努力,只需要靠机遇,是上天的安排,但是持续地爱一个人就要靠努力。世界上的人虽多,但在下雨的深夜陪你回家的,实际上只有一个。。
南沙新高二补习。


南沙新高二补习。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:我们继续奋力向前,逆水行舟,被不断地向后推,直至回到往昔岁月。菲茨杰拉德《伟大的盖茨比》。四年级简便运算技巧总结


一、加法简便运算技巧
加法交换律
定义:两个数相加,交换加数的位置,和不变,即
?
+
?
=
?
+
?
a+b=b+a。
示例:
34
+
56
=
56
+
34
34+56=56+34。在计算多个数相加时,可以通过交换加数的位置,将能凑整的数先相加。例如
23
+
45
+
77
=
23
+
77
+
45
=
100
+
45
=
145
23+45+77=23+77+45=100+45=145。
加法结合律
定义:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c)。
示例:
12
+
35
+
65
=
12
+
(
35
+
65
)
=
12
+
100
=
112
12+35+65=12+(35+65)=12+100=112。
二、减法简便运算技巧
减法的性质
连减性质:一个数连续减去两个数,等于这个数减去这两个数的和,即
?
?
?
?
?
=
?
?
(
?
+
?
)
a?b?c=a?(b+c)。
示例:
156
?
34
?
66
=
156
?
(
34
+
66
)
=
156
?
100
=
56
156?34?66=156?(34+66)=156?100=56。
去括号法则:如果括号前面是减号,去掉括号后,括号里的减号要变成加号,即
?
?
(
?
?
?
)
=
?
?
?
+
?
a?(b?c)=a?b+c。例如
234
?
(
134
?
25
)
=
234
?
134
+
25
=
100
+
25
=
125
234?(134?25)=234?134+25=100+25=125。
三、乘法简便运算技巧
乘法交换律
定义:两个数相乘,交换因数的位置,积不变,即
?
×
?
=
?
×
?
a×b=b×a。
示例:
3
×
5
×
4
=
3
×
4
×
5
=
60
3×5×4=3×4×5=60。
乘法结合律
定义:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变,即
(
?
×
?
)
×
?
=
?
×
(
?
×
?
)
(a×b)×c=a×(b×c)。
示例:
25
×
4
×
8
=
(
25
×
4
)
×
8
=
100
×
8
=
800
25×4×8=(25×4)×8=100×8=800。通常看到
25
25就找
4
4,看到
125
125就找
8
8,因为
25
×
4
=
100
25×4=100,
125
×
8
=
1000
125×8=1000。
乘法分配律
正用乘法分配律:
(
?
+
?
)
×
?
=
?
×
?
+
?
×
?
(a+b)×c=a×c+b×c。
示例:
(
2
+
3
)
×
5
=
2
×
5
+
3
×
5
=
10
+
15
=
25
(2+3)×5=2×5+3×5=10+15=25。
逆用乘法分配律(提取公因式):
?
×
?
+
?
×
?
=
(
?
+
?
)
×
?
a×c+b×c=(a+b)×c。
示例:
3
×
7
+
5
×
7
=
(
3
+
5
)
×
7
=
8
×
7
=
56
3×7+5×7=(3+5)×7=8×7=56。
乘法分配律的复杂用法(数的拆分):
示例:
38
×
99
=
38
×
(
100
?
1
)
=
38
×
100
?
38
×
1
=
3800
?
38
=
3762
38×99=38×(100?1)=38×100?38×1=3800?38=3762;
45
×
102
=
45
×
(
100
+
2
)
=
45
×
100
+
45
×
2
=
4500
+
90
=
4590
45×102=45×(100+2)=45×100+45×2=4500+90=4590。
四、除法简便运算技巧
除法的性质
连除性质:一个数连续除以两个数,等于这个数除以这两个数的积,即
?
÷
?
÷
?
=
?
÷
(
?
×
?
)
a÷b÷c=a÷(b×c)。
示例:
120
÷
4
÷
5
=
120
÷
(
4
×
5
)
=
120
÷
20
=
6
120÷4÷5=120÷(4×5)=120÷20=6。
去括号法则:如果括号前面是除号,去掉括号后,括号里的乘号要变成除号,即
?
÷
(
?
×
?
)
=
?
÷
?
÷
?
a÷(b×c)=a÷b÷c;
?
÷
(
?
÷
?
)
=
?
÷
?
×
?
a÷(b÷c)=a÷b×c。例如
240
÷
(
4
×
3
)
=
240
÷
4
÷
3
=
60
÷
3
=
20
240÷(4×3)=240÷4÷3=60÷3=20;
180
÷
(
9
÷
2
)
=
180
÷
9
×
2
=
20
×
2
=
40
180÷(9÷2)=180÷9×2=20×2=40。
五、混合运算简便技巧
带符号搬家
在同级运算中,可以带符号搬家,改变运算顺序。
示例:
25
×
4
÷
25
×
4
=
(
25
÷
25
)
×
(
4
×
4
)
=
1
×
16
=
16
25×4÷25×4=(25÷25)×(4×4)=1×16=16(注意和
25
×
4
÷
(
25
×
4
)
25×4÷(25×4)区分,后者结果为
1
1)。
先算一部分
在混合运算中,如果有一部分可以简便运算,先算这部分。
示例:
125
×
8
+
25
×
4
=
1000
+
100
=
1100
125×8+25×4=1000+100=1100。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:爱情就像一根橡皮筋,相爱时两人把它拉得紧紧的。不爱了,任何一个人先放手,留下的那一个都会被橡皮筋反弹回来狠狠击痛。南沙新高二补习。。



南沙新高二补习。


南沙新高二补习。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:别为了那些不属于你的观众,去演绎不擅长的人生。。中小学教育(一对一辅导)专注于学生学习能力的培养以及学生学科知识的辅导,中小学教育(一对一辅导)视教学质量为生命,受到许多学生和家长的认可。

中小学教育-专注个性化一对一辅导-免费试听入口

中小学教育秉承"以人为本、因材施教"的个性化教育理念,打造了包括个性化培训、全日制教育、职业教育、文化服务等在内的丰富业务模式. 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:我要的,只是简单而安稳的生活,最好的幸福,是你给的在乎。别动不动就以后啊未来啊,我都不想听,我只知道今天中午我说想看电影,你晚上下了班就会带我去。

南沙新高二补习。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:再长的路,一步步也能走完,再短的路,不迈开双脚也无法到达。。



南沙新高二补习。


广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:身边的人来来去去。渐渐的,开始坚信,他们的出现是为了让我们懂得谁都是谁的过客。只是有些人,留了一辈子。南沙新高二补习。。五年级数学学习难点解析


一、应用题相关难点
和差问题
难点在于要理解和与差的概念,并且根据口诀准确计算出两个数。例如已知两数的和与差,求这两个数时,需要牢记大数=(和 + 差)/2,小数=(和 - 差)/2。如果对和差概念理解不清晰,就容易在计算时出错。
鸡兔同笼问题
这个问题的难点在于思维的转换。当假设全是鸡或全是兔时,需要准确理解计算兔子或鸡数量的公式背后的逻辑。如求兔时,假设全是鸡,则兔子数=(总脚数 - 头数×2)/(4 - 2);求鸡时,假设全是兔,则鸡数=(4×头数 - 总脚数)/(4 - 2)。学生往往在假设后,对于脚数的差值与动物数量的关系容易混淆。
路程问题
相遇问题
难点在于理解相遇时路程和速度之间的关系。例如甲乙两人从相距一定距离的两地相向而行,要明确相遇那一刻,两人走过的路程和恰好是两地的距离,然后通过除以速度和得到相遇时间。学生可能对速度和路程的概念理解不够深入,导致在计算时无法正确列出算式。
追及问题
关键是要把握先走的路程和速度差与追及时间的关系。像姐弟二人的例子中,先走的路程是先走者的速度乘以先走时间,速度差是两者速度相减,追及时间等于先走的路程除以速度差。对于先走路程的计算以及速度差概念的运用是学生容易出错的地方。
工程问题
难点在于理解工作效率、工作量和工作时间之间的关系。例如1除以时间就是工作效率,在多人合作时要计算出工作效率的和。而且在计算过程中,对于已经完成工作量的计算以及剩余工作量的计算容易出现失误。像一项工程甲单独做和乙单独做不同天数完成,甲乙同时做一段时间后由乙单独做剩余天数的计算,需要对工作总量看作单位“1”有清晰的认识,同时要准确计算各阶段的工作量。
植树问题
难点在于区分路是直的和路是圆的情况。在直路植树时,要考虑两端是否植树等不同情况;在圆形花坛边植树,直接用路的长度除以间距就得到植树棵数。学生容易混淆这两种不同的植树情况,从而导致计算错误。
盈亏问题
对于盈亏问题的不同类型(一盈一亏、全亏等),需要准确记忆相应的公式。如一盈一亏时,公式为(盈数+亏数)/(两次每人分配数的差)。学生在判断是哪种盈亏类型以及准确运用公式方面可能存在困难,导致计算结果错误。
年龄问题
虽然年龄差不变这一概念相对简单,但在具体的题目中,像计算几年后一个人的年龄是另一个人年龄的几倍这种问题,要根据年龄差不变列出正确的方程或者算式是难点。例如小军和爸爸的年龄问题,要利用好岁差不会变这一关键条件来解题。
二、知识点学习难点
长方体与正方体相关知识
表面积与体积计算
在计算长方体和正方体的表面积和体积时,公式容易混淆。例如长方体表面积=(长×宽+长×高+宽×高)×2,体积=长×宽×高;正方体表面积=棱长×棱长×6,体积=棱长×棱长×棱长。学生在计算时可能会记错公式,或者在面对复杂的实际问题(如长方体肥皂的表面积、体积计算)时,不能正确判断使用哪个公式进行计算。
立体图形的切割与拼接
当把正方体木块锯成两个完全一样的长方体木块后,表面积的变化情况是一个难点。学生需要理解切割后表面积增加了两个正方形的面,即增加了棱长×棱长×2的面积。对于立体图形在切割或拼接时表面积和体积的变化情况,需要较强的空间想象能力,如果空间想象能力不足,就很难准确判断变化后的表面积和体积数值。
分数相关知识
分数的加减法
对于异分母分数加减法,需要先通分再计算。例如计算
1
2
+
1
3
2
1
?
 + 
3
1
?
 ,要先找到2和3的最小公倍数6,将分数化为
3
6
+
2
6
=
5
6
6
3
?
 + 
6
2
?
 = 
6
5
?
 。学生在找最小公倍数和通分的过程中容易出错,而且在计算过程中也可能出现分子相加错误等情况。
分数的意义与性质
理解分数的意义,如单位“1”的概念,是一个难点。像一根铁丝剪成两段,第二段占全长的
3
5
5
3
?
 ,那么第一段长
?
m,比较两段的长短,需要根据分数的意义来判断第一段占全长的
1
?
3
5
=
2
5
1? 
5
3
?
 = 
5
2
?
 ,从而得出第二段长。对于不同分数表示的意义以及分数的基本性质(如约分、通分的依据)的理解不够深入,会影响相关题目的解答。
因数与倍数相关知识
概念理解
因数和倍数是相互依存的概念,不能单独说一个数是因数或倍数,而且在考虑因数和倍数时,0除外。例如12÷6 = 2,12是6和2的倍数,6和2是12的因数。学生容易忽略这些概念的限制条件,在判断因数和倍数关系时出错。同时对于一个数的最大因数和最小倍数都是它本身这一概念的理解也可能存在困难。
质数、合数、奇数、偶数概念区分
在1 - 20的自然数中,区分是奇数但不是质数的数,需要对这些概念有清晰的认识。奇数是不能被2整除的数,质数是除了1和它本身以外不再有其他因数的自然数。像9、15是奇数但不是质数,学生在区分这些概念时容易混淆,导致判断错误。
三、方程相关难点
等式与方程概念
理解等式和方程的意义以及它们之间的关系是难点。方程是含有未知数的等式,例如
2
?
+
3
=
7
2x+3=7是方程也是等式。学生可能会错误地认为含有未知数的式子就是方程,而忽略了方程必须是等式这一条件。
等式的性质和解方程
等式性质的探索与运用
在探索等式两边同时加上或减去同一个数,所得结果仍然是等式,以及等式两边同时乘或除以同一个不等于0的数,结果仍然是等式这两个性质时,学生可能只是机械地记忆,而没有真正理解。在运用这些性质解方程时,例如解
3
?
?
5
=
10
3x?5=10,可能会在移项或系数化为1的过程中出错,如忘记将 - 5移项后变为 + 5,或者在除以系数时计算错误。
列方程解决实际问题
等量关系的寻找
这是列方程解决实际问题的关键难点。无论是一步计算还是两步计算的实际问题,如列方程解决行程问题,要正确找出应用题中数量间的相等关系。像在相遇问题中,根据路程和速度、时间的关系找到等量关系,对于学生来说是比较困难的,一旦等量关系找错,方程就会列错,从而得出错误的答案。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:要相信运气:事实上越努力,你的运气会越好。南沙新高二补习。。


南沙新高二补习。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:天是蓝的,草是绿的,没有你我照样活着。南沙新高二补习。。欢迎预约就近校区免费测评体验课。预约免费试听课:400-6169-685.

  • 相关阅读