咨询热线 400-6169-615
2025-06-07 20:09:34|已浏览:11次
花都二年级语文辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:我要的,只是简单而安稳的生活,最好的幸福,是你给的在乎。别动不动就以后啊未来啊,我都不想听,我只知道今天中午我说想看电影,你晚上下了班就会带我去。。
花都二年级语文辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:每一段路,只要还有不甘心,它就还没有走到尽头。。五年级数学小数乘法解题技巧
一、竖式计算技巧
数位对齐:在小数乘法竖式计算中,要注意不是数位对齐,而是末尾数字对齐,然后按照整数乘法进行计算。例如计算
0.16
×
1.4
0.16×1.4,将
0.16
0.16和
1.4
1.4的末尾数字对齐,把
0.16
0.16视为
16
16,
1.4
1.4视为
14
14进行
16
×
14
16×14的计算,得到结果
224
224。之后确定乘积的小数点位置,从右边开始数,因数中一共有
3
3位小数,所以小数点需要移动到
2
2的前面,并且当小数点在最前面时,要在整数部分补
0
0,最终结果为
0.224
0.224。
二、简便运算技巧
运用运算定律
乘法交换律:
?
×
?
=
?
×
?
a×b=b×a。例如
0.25
×
3.6
×
4
=
0.25
×
4
×
3.6
=
1
×
3.6
=
3.6
0.25×3.6×4=0.25×4×3.6=1×3.6=3.6。
乘法结合律:
(
?
×
?
)
×
?
=
?
×
(
?
×
?
)
(a×b)×c=a×(b×c)。如
0.125
×
2.5
×
8
=
(
0.125
×
8
)
×
2.5
=
1
×
2.5
=
2.5
0.125×2.5×8=(0.125×8)×2.5=1×2.5=2.5。
乘法分配律:
?
×
(
?
+
?
)
=
?
×
?
+
?
×
?
a×(b+c)=a×b+a×c。例如
1.5
×
(
10
+
0.2
)
=
1.5
×
10
+
1.5
×
0.2
=
15
+
0.3
=
15.3
1.5×(10+0.2)=1.5×10+1.5×0.2=15+0.3=15.3。
积的变化规律:通过对算式进行适当变形,将其中的数化成整数、整十数、整十数……或者使这道题中的一些数变得容易口算,从而使计算简便。例如计算
0.5
×
1.2
0.5×1.2,可以根据积的变化规律将
0.5
0.5扩大
2
2倍变为
1
1,
1.2
1.2缩小
2
2倍变为
0.6
0.6,那么
0.5
×
1.2
=
1
×
0.6
=
0.6
0.5×1.2=1×0.6=0.6。
三、解决实际问题的技巧
方法一:整数运算法:将小数转化为整数进行运算,最后再将结果转化回小数。比如在计算商品价格、测量长度或重量等实际问题时,如果遇到小数乘法,就可以采用这种方法。例如计算
2.5
2.5米的绳子,每米
1.2
1.2元,总价为
2.5
×
1.2
2.5×1.2,可以先把
2.5
2.5看作
25
25,
1.2
1.2看作
12
12,计算
25
×
12
=
300
25×12=300,因为因数一共扩大了
10
×
10
=
100
10×10=100倍,所以结果要缩小
100
100倍,即
300
÷
100
=
3
300÷100=3元。
方法二:近似法:将小数化为最接近的整数进行运算,然后再根据误差进行修正。例如计算
3.1
×
4.2
3.1×4.2,可以近似看作
3
×
4
=
12
3×4=12,然后再考虑近似产生的误差,
3.1
×
4.2
=
(
3
+
0.1
)
×
(
4
+
0.2
)
=
3
×
4
+
3
×
0.2
+
0.1
×
4
+
0.1
×
0.2
=
12
+
0.6
+
0.4
+
0.02
=
13.02
3.1×4.2=(3+0.1)×(4+0.2)=3×4+3×0.2+0.1×4+0.1×0.2=12+0.6+0.4+0.02=13.02,而近似计算结果为
12
12,误差为
13.02
?
12
=
1.02
13.02?12=1.02,可以根据实际需求判断是否需要修正。
方法三:先算整数部分,再算小数部分:先计算小数前面的整数部分,然后再根据小数位数进行乘法运算。例如
1.25
×
3.6
1.25×3.6,先计算
1
×
3
=
3
1×3=3,再计算
0.25
×
3
=
0.75
0.25×3=0.75,
1
×
0.6
=
0.6
1×0.6=0.6,
0.25
×
0.6
=
0.15
0.25×0.6=0.15,最后将结果相加
3
+
0.75
+
0.6
+
0.15
=
4.5
3+0.75+0.6+0.15=4.5。
方法四:化简法:将小数化简为最简形式,例如约分或化为分数,然后进行乘法运算。例如
0.5
×
0.4
0.5×0.4,化为分数就是
1
2
×
2
5
=
1
5
=
0.2
2
1
?
×
5
2
?
=
5
1
?
=0.2。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:当你劝告别人时,若不顾及别人的自尊心,那么再好的言语都没有用的。花都二年级语文辅导。。
花都二年级语文辅导。你的孩子在学习上是否遇到了瓶颈?是时候告别那些“一刀切”的教学方法!广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:人生中有些事是不得不做的,于不得不做中勉强去做,是毁灭;于不得不做中做的好,是勇敢。。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:含泪播种的人一定能含笑收获。花都二年级语文辅导。高一作文一对一个性化辅导课程
【课程简介】
1.高一全科辅导,由多年经验丰富的导师亲授指点,巩固学科内容,;
2、针对孩子学习特点及性格特点制作讲义,针对性强,便于接受;
3. 大数据评测学科盲点,个性化1对1辅导方案,夯实基础,;
4、辅导计划增加五大基础巩固计划,计划性帮助学生持续进步。
【课程亮点】
1、1v1个性化辅导,小班制辅导更细致;
2、多位一体化服务,助教1对1跟进学习提醒互动答疑,因材施教,个性教学小班;
3、直击应试,教授展掌握应试技巧,考试干货,持续进步,
4、易混考试要点预测,剖析考题,学生易错纠正;
5、先试听再定课,试听限量抢!
【课程大纲】
基础
1.激发学习动机
2.培养学习兴趣
3.精讲课内基础知识
4.阅读题型汇总,形成知识网络
5.古诗词常识巩固
6.记叙文阅读剖析
进阶
1.培养语文学科素养
2.掌握文言实词、虚词
3.古诗词阅读整体规划
4.散文阅读训练与巩固
5.写作素材收集,优化写作技巧
规范
1.解题能力培养,学习技巧点拨
2.语文基础知识训练
3.归纳总结古诗词鉴赏方法
4.小说主旨阅读与自我感悟
5.作文结构创新技法
点拨
1.学习现代文阅读、文言文阅读、写作等方法
2.训练文言文阅读能力
3.精讲古诗词考题分类
4.社科文学习方法讲解
5.写作思维拓展训练
巩固
1.阶段性语文知识训练
2.基础知识不失分法则
3.语言运用例题讲解
4.现代文题干阅读技巧
5.写作经典模板分享。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:如果,某一天,你不再爱我,请你告诉我。我会离开,并祝你幸福,因为,我爱你。花都二年级语文辅导。.
花都二年级语文辅导。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:没有什么比爱自己更重要,辜负自己才是辜负。。五年级数学小数乘法练习题
一、基础计算类
直接写出得数
0.6
×
0.8
=
0.48
0.6×0.8=0.48
3
×
0.9
=
2.7
3×0.9=2.7
2.5
×
0.4
=
1
2.5×0.4=1
3.6
×
0.4
=
1.44
3.6×0.4=1.44
12.5
×
8
=
100
12.5×8=100
50
×
0.04
=
2
50×0.04=2
80
×
0.3
=
24
80×0.3=24
1.1
×
9
=
9.9
1.1×9=9.9
列竖式计算
1.45
×
0.12
=
0.174
1.45×0.12=0.174
3.08
×
0.28
=
0.8624
3.08×0.28=0.8624
13.5
×
26.7
=
360.45
13.5×26.7=360.45
3.15
×
0.35
=
1.1025
3.15×0.35=1.1025
二、填空类
因数与积的关系
13.65
13.65扩大到原来的
100
100倍是
1365
1365;
6.8
6.8缩小到原来的
1
100
100
1
?
是
0.068
0.068 。
9.8
9.8乘一个小于
1
1的数,积小于
9.8
9.8;乘一个大于
1
1的数,积大于
9.8
9.8 。
小数位数判断
4.09
×
0.05
4.09×0.05的积有四位小数,
5.2
×
4.76
5.2×4.76的积有三位小数 。
根据积的变化规律写积
已知
13
×
28
=
364
13×28=364,则
1.3
×
2.8
=
3.64
1.3×2.8=3.64,
0.13
×
0.28
=
0.0364
0.13×0.28=0.0364,
13
×
2.8
=
36.4
13×2.8=36.4,
0.013
×
28
=
0.364
0.013×28=0.364,
0.13
×
2.8
=
0.364
0.13×2.8=0.364,
1.3
×
0.028
=
0.0364
1.3×0.028=0.0364 。
三、判断类
积的计算判断
0.03
0.03与
0.04
0.04的积是
0.0012
0.0012,不是
0.12
0.12,所以“
0.03
0.03与
0.04
0.04的积是
0.12
0.12”这句话错误(
×
×) 。
一个小数的
16.5
16.5倍一定大于这个小数,因为一个数(
0
0除外)乘大于
1
1的数,积比原来的数大,所以这句话正确(
√
√) 。
53.78
53.78保留一位小数约是
53.8
53.8,正确(
√
√) 。
一个数乘小数,积不一定小于这个数,例如
2
×
1.5
=
3
2×1.5=3,
3
>
2
3>2,所以“一个数乘小数,积一定小于这个数”这句话错误(
×
×) 。
四、选择类
因数变化对积的影响
两个数相乘,一个因数扩大到它的
100
100倍,另一个因数缩小到它的
1
10
10
1
?
,则积扩大到它的
10
10倍,答案为A 。
比较积与因数的大小
因为
1.01
>
1
1.01>1,
0.99
<
1
0.99<1,
1
=
1
1=1,
2
>
1
2>1,一个数(
0
0除外)乘小于
1
1的数,积比原来的数小,所以得数小于
0.85
0.85的是
0.85
×
0.99
0.85×0.99,答案为B 。
五、简便计算类
乘法结合律与分配律的应用
12.5
×
0.4
×
2.5
×
8
=
(
12.5
×
8
)
×
(
0.4
×
2.5
)
=
100
×
1
=
100
12.5×0.4×2.5×8=(12.5×8)×(0.4×2.5)=100×1=100
9.5
×
101
=
9.5
×
(
100
+
1
)
=
9.5
×
100
+
9.5
×
1
=
950
+
9.5
=
959.5
9.5×101=9.5×(100+1)=9.5×100+9.5×1=950+9.5=959.5
3.65
×
2.8
+
3.65
×
7.2
=
3.65
×
(
2.8
+
7.2
)
=
3.65
×
10
=
36.5
3.65×2.8+3.65×7.2=3.65×(2.8+7.2)=3.65×10=36.5
4.2
×
7.8
+
2.2
×
4.2
=
4.2
×
(
7.8
+
2.2
)
=
4.2
×
10
=
42
4.2×7.8+2.2×4.2=4.2×(7.8+2.2)=4.2×10=42
0.87
×
3.16
+
4.64
=
2.7492
+
4.64
=
7.3892
0.87×3.16+4.64=2.7492+4.64=7.3892
76.1
×
17
?
76.1
×
7
=
76.1
×
(
17
?
7
)
=
76.1
×
10
=
761
76.1×17?76.1×7=76.1×(17?7)=76.1×10=761
六、解决问题类
倍数关系的应用
2008年出国留学的人数为
17.98
17.98万人,2013年约是2008年的
2.3
2.3倍,2013年出国留学人数大约是
17.98
×
2.3
≈
41.35
17.98×2.3≈41.35(万人) 。
先乘后减的应用
商店运进
14
14筐苹果,每筐
35.8
?
?
35.8kg,卖掉了
400
?
?
400kg,还剩下
35.8
×
14
?
400
=
101.2
35.8×14?400=101.2(
?
?
kg) 。
乘法运算在实际中的应用
某药厂生产的感冒灵颗粒,一盒内装
10
10袋,每袋含对乙酰氨基酚
0.2
?
0.2g,则
10
×
2
×
0.2
=
4
10×2×0.2=4(
?
g) 。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:孤独一人也没关系,只要能发自内心地爱着一个人,人生就会有救。哪怕不能和他生活在一起。花都二年级语文辅导。。