咨询热线 400-6169-615
2025-05-13 12:53:28|已浏览:9次
广州初中暑假班。
专注中小学辅导21年的机构。广州初中暑假班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你承受的苦难并不比他人多太多,痛苦主要来自敏感和脆弱。。
全国校区,方便就近入学。
这里的老师经验丰富,教学方法独特。
每个孩子都能得到个性化辅导。
提高学习效率,轻松应对考试。
课程内容紧贴教材,全面覆盖。广州初中暑假班。
针对性练习,帮助孩子巩固知识点。
小班教学,保证每个孩子都能得到关注。
课后还有答疑服务,解决孩子的疑问。
家长也能实时了解孩子的学习进度。
报名简单,线上线下都可以。
现在就来咨询,名额有限,抓紧时间!
让孩子的学习更上一层楼,选择我们不会错!
我们期待与您一起见证孩子的成长与进步。广州初中暑假班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你们不要总争自由,自由是外界给你的,你们先要争独立,给你自由你不独立你仍然是奴隶,你要把你身上蒙蔽你的概念和成见,要像剥笋一样一层一层的剥去露出里面他里头很鲜嫩很清的那个劲。。
初一 | 初二 | 初三 | 中考 |
初一语文、数学、英语、物理、化学、文综培训 |
初二语文、数学、英语、物理、化学、文综培训 |
初三语文、数学、英语、物理、化学、文综培训 |
中考语文、数学、英语、物理、化学、文综培训,中考冲刺班,中考复读。 |
高一 | 高二 | 高三 | 高考 |
高一语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高二语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高三语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高考语文、数学、英语、物理、化学、历史、政治、地理,生物培训,高考冲刺,高考复读,新高三集训营,高三复读。 |
小学 | 学科1 | 学科2 | 学科3 |
一年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
二年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
三年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
四年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
五年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
六年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
广州初中暑假班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:若再见你,不过是会心一笑,道一句:好久不见。
五年级数学难题集锦
一、关于长方体和正方体的难题
表面积与体积相关
用四个棱长是4厘米的正方体,拼成一个长方体,求这个长方体表面积最小是多少,体积是多少。
要使拼成的长方体表面积最小,那就要把四个正方体两两拼接,这样拼接后长方体的长是8厘米、宽是4厘米、高是8厘米。
根据长方体表面积公式
?
=
(
?
?
+
?
?
+
?
?
)
×
2
S=(ab+ah+bh)×2(其中
?
a为长,
?
b为宽,
?
h为高),可得表面积为
(
8
×
4
+
8
×
8
+
4
×
8
)
×
2
=
256
(8×4+8×8+4×8)×2=256平方厘米。
根据长方体体积公式
?
=
?
?
?
V=abh,可得体积为
8
×
4
×
8
=
256
8×4×8=256立方厘米。
一个正方体棱长之和是36厘米,求这个正方体的棱长、表面积和体积。
正方体有12条棱且每条棱长度相等,所以棱长为
36
÷
12
=
3
36÷12=3厘米。
根据正方体表面积公式
?
=
6
?
2
S=6a
2
(
?
a为棱长),可得表面积为
6
×
3
2
=
54
6×3
2
=54平方厘米。
根据正方体体积公式
?
=
?
3
V=a
3
,可得体积为
3
3
=
27
3
3
=27立方厘米。
棱长变化相关
一个正方体的棱长扩大2倍,求表面积扩大的倍数。
设原正方体棱长为
?
a,则原表面积为
6
?
2
6a
2
。棱长扩大2倍后变为
2
?
2a,此时表面积为
6
×
(
2
?
)
2
=
24
?
2
6×(2a)
2
=24a
2
。
所以表面积扩大了
24
?
2
÷
6
?
2
=
4
24a
2
÷6a
2
=4倍。
二、关于数的整除相关难题
公倍数与公因数相关
两个数的最大公因数是9,最小公倍数是90,求这两个数。
设这两个数分别为
9
?
9a和
9
?
9b(
?
a、
?
b互质),根据两个数的积等于这两个数的最大公因数和最小公倍数的积,可得
9
?
×
9
?
=
9
×
90
9a×9b=9×90,即
?
?
=
10
ab=10。
因为
?
a、
?
b互质,所以
?
=
1
a=1,
?
=
10
b=10或者
?
=
2
a=2,
?
=
5
b=5,则这两个数为
9
9和
90
90或者
18
18和
45
45。
已知两个数的积是3072,最大公因数是16,求这两个数。
设这两个数分别为
16
?
16a和
6
?
6b(
?
a、
?
b互质),则
16
?
×
16
?
=
3072
16a×16b=3072,即
?
?
=
12
ab=12。
因为
?
a、
?
b互质,所以
?
=
1
a=1,
?
=
12
b=12或者
?
=
3
a=3,
?
=
4
b=4,则这两个数为
16
16和
192
192或者
48
48和
64
64。
三、关于分数相关难题
若
(
?
÷
2
)
(a÷2)是一个真分数,下面各分数
?
×
2
?
×
2
b×2
a×2
?
、
?
?
2
?
?
2
b?2
a?2
?
、
?
÷
2
?
÷
2
b÷2
a÷2
?
、
?
+
2
?
+
2
b+2
a+2
?
中最大的一个是哪个(
?
≠
0
b
=0)。
因为
(
?
÷
2
)
(a÷2)是真分数,所以
?
<
?
a<b。
对于
?
×
2
?
×
2
b×2
a×2
?
,其值等于
?
?
b
a
?
;对于
?
?
2
?
?
2
b?2
a?2
?
,因为
?
<
?
a<b,分子分母同时减2后分数值会增大;对于
?
÷
2
?
÷
2
b÷2
a÷2
?
,其值等于
?
?
b
a
?
;对于
?
+
2
?
+
2
b+2
a+2
?
,因为
?
<
?
a<b,分子分母同时加2后分数值会减小。
所以最大的是
?
?
2
?
?
2
b?2
a?2
?
。
四、关于正负数相关难题
把高于海平面200米,记作+200米,那么“ - 250米”表示低于海平面250米;如果把潜水艇在水下10米处记作 - 10米,那么它上浮5米后,这时它的位置可以记作 - 5米。
五、关于长方形相关难题
李大伯用24米长的篱笆围成一个长方形鸡舍,若长方形的一面靠墙,求这个长方形鸡舍的面积最大是多少平方米。
设长方形鸡舍长为
?
x米(靠墙的一边),宽为
?
y米,则
?
+
2
?
=
24
x+2y=24,可得
?
=
24
?
2
?
x=24?2y。
长方形面积
?
=
?
?
=
(
24
?
2
?
)
?
=
?
2
?
2
+
24
?
S=xy=(24?2y)y=?2y
2
+24y,这是一个二次函数,当
?
=
6
y=6时,面积最大。
此时
?
=
12
x=12,最大面积为
12
×
6
=
72
12×6=72平方米。广州初中暑假班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:运气就是,机会碰巧撞到了你的努力。广州初中暑假班。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:学会放下,凡事看淡一些,不牵挂,不计较,是是非非无所谓。心是工画师,把握住自己的心,让心境清净、洁白、安静。广州初中暑假班。。预约就近校区免费试听课:400-6169-685