欢迎来到三人行教育网,代理招生网站!

全国切换城市

咨询热线 400-6169-615

位置:三人行教育网,代理招生网站 > 新闻资讯 > 教育新闻 > 教育要闻 >  哈尔滨开发区高考数学培训机构。

哈尔滨开发区高考数学培训机构。

来源:三人行教育网,代理招生网站

2025-05-05 00:53:15|已浏览:9次

哈尔滨开发区高考数学培训机构。


哈尔滨开发区高考数学培训机构。。哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:人生最糟的不是失去爱的人,而是因为太爱一个人而失去了自己。哈尔滨开发区高考数学培训机构。。



哈尔滨开发区高考数学培训机构。


哈尔滨开发区高考数学培训机构。长沙青成教育高考冲刺班好不好?近期很多家长们在咨询这家教学机构怎么样?据小编的一个了解来说,这是长沙地区一家高中教学较早的一家教学机构,专业、口碑好、教学实力以及教学服务也是很不错的,同学们来这里备战高考学习,是值得推荐的。
长沙青成高考冲刺班好不好
先来介绍一下这家教学机构,其是青成教育集团旗下,专注于为高中学员提供高中全科优质教学服务的教学机构,这里为同学们提供高中全科教学课程,艺考文化课培训课程、复读文化培训课程等,同学们可以根据自己实际情况进行课程选择。总体来说,是很不错的。
1.舒适、安静的教学环境
其在长沙是有自己独立的教学营地及校区,这里教学环境舒适安静,为孩子们学习提供安静的学习环境,助力同学们更好学习学科知识,不断提升自己学习能力。
青成教育
2.优质的教学老师
10余年办学经验,优秀的管理团队和精英教师队伍,能把握高考命题方向,洞悉高考命题规律,打破制约教与学的瓶颈,特制“3+1+2”新高考选科补习模块,尖子生1-1定单式培育,偏科生1+1专题化培补,助力同学们高考学习,帮助孩子们在提升学科专业能力的同时,不断提升学习能力。
3.鲜明的教学特色
为了帮助孩子们更好的学习,有着独特的教学特色,具体可以概况为:精准化、定制化、个性化、科学化。
精准化:学校依托集团实力雄厚的教育体系,针对新高考,由集团资深专家学者直接参与规则制定,指导教师研究新高考,注重优势学科的培尖和短板学科的培补,更加精准。
长沙青成教育
定制化:结合不同考生现状,合理制定每名学生应对新高考培补方案,帮助学生量身定制个性化的、适合的学科组合以及学习规划。
个性化:会从学生的学情分析入手,并结合同学们实际学习能力,让同学们学高效有效。
科学化:更加注重同学们学习能力提升,只有掌握正确的学习模式,学习效率以及能力提升才会进步更快。
这就是长沙青成教育相关情况,如果想要了解更加详细的内容,那欢迎同学们在线咨询。
哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:天底下有享不了的福,没有遭不了的罪,多大的苦你要吃,多大的罪你要受,只要你吃苦受罪,好日子就会来了。哈尔滨开发区高考数学培训机构。。



中小学个性化辅导班

哈尔滨开发区高考数学培训机构。。 哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:成功并不是重要的事,重要的是努力。。图形面积变化题型解析


一、图形面积问题的基础知识
面积概念
对于平面图形,面积是衡量其平面区域大小的量度。例如在三角形中,三角形所占据的平面空间大小就是它的面积;在长方形中,长乘以宽得到的数值就是其面积大小等。
常见图形面积公式
三角形:
?
=
1
2
?
?
S= 
2
1
?
 ah(
?
a为底边长,
?
h为这条底边对应的高)
[
3
]
(
)
[3]()
 。
长方形:
?
=
?
?
S=ab(
?
a为长,
?
b为宽)
[
3
]
(
)
[3]()
 。
正方形:
?
=
?
2
S=a 
2
 (
?
a为边长)
[
3
]
(
)
[3]()
 。
平行四边形:
?
=
?
?
S=ah(
?
a为底边长,
?
h为这条底边对应的高)
[
3
]
(
)
[3]()
 。
梯形:
?
=
(
?
+
?
)
?
2
S= 
2
(a+b)h
?
 (
?
a、
?
b为上底和下底,
?
h为高)
[
3
]
(
)
[3]()
 。
二、图形面积变化题型及解析
图形切割或分割后的面积变化
正方体切割
当把一个正方体切成几个图形时,会增加面。例如把一个棱长为5米的正方体分割成两个长方体,分割后会增加两个面,原来正方体有六个面,加上增加的两个面,现在两个长方体的总面数为8个面,一个面的面积是
5
×
5
=
25
5×5=25平方米,所以涂油漆的总面积是
25
×
8
=
200
25×8=200平方米,这种从面的增减入手考虑的方法比从长方体的表面积公式入手计算要简便很多
[
4
]
(
)
[4]()
 。
长方体切割
把一个长方体锯成体积相等的两份,不同的锯法增加的面不同。如一个长2.4米,宽0.8米,高0.4米的长方体,其前(后)面面积是
2.4
×
0.4
=
0.96
2.4×0.4=0.96平方米,上(下)面的面积是
2.4
×
0.8
=
1.92
2.4×0.8=1.92平方米,左(右)面的面积是
0.8
×
0.4
=
0.32
0.8×0.4=0.32平方米。要想增加的面最小,应竖切,让它增加左右两个面,即增加的面积为
0.32
×
2
=
0.64
0.32×2=0.64平方米
[
4
]
(
)
[4]()
 。
图形拼接或组合后的面积变化
基本图形组合
例如用几个小正方形组合成一个大长方形,此时大长方形的面积就是这几个小正方形面积之和。如果小正方形边长为
?
a,有
?
n个小正方形,那么组合后的大长方形面积就是
?
×
?
2
n×a 
2
 。
不规则图形组合
对于一些不规则图形的组合,可以通过将其分割成基本图形,计算出各个基本图形的面积后相加得到总面积。比如一个由三角形和梯形组合成的不规则图形,可以分别计算三角形和梯形的面积,然后求和得到整个图形的面积。
图形平移、旋转、割补后的面积变化(等积变形)
平移
在长方形内画一些直线将其分成几块区域时,通过平移一些部分,可以将不规则的图形转化为规则图形来计算面积。例如在求某些多边形在长方形内部的涂色部分面积时,通过平移周边的小图形,可以使计算更加简便。
旋转
对于一些特殊图形,如等腰三角形相关的旋转问题。将等腰三角形绕着某个顶点旋转一定角度后,图形的形状发生了变化,但面积不变。可以利用这个性质来解决一些复杂的面积问题。
割补
例如在求三角形的面积时,如果已知一条中线将三角形分成两部分,那么可以通过割补的方法将其中一部分旋转或平移,与另一部分组合成平行四边形等容易计算面积的图形。又如把一个不规则的四边形通过割补的方法转化为三角形或长方形来计算面积。
图形按比例变化后的面积变化
相似图形
如果两个图形相似,相似比为
?
k,那么它们的面积比为
?
2

2
 。例如两个相似三角形,其对应边的比例为
2
:
1
2:1,那么它们的面积比就是
4
:
1
4:1。
图形边长变化
对于正方形,如果边长变为原来的
?
n倍,那么面积就变为原来的
?
2

2
 倍。对于长方形,长变为原来的
?
m倍,宽变为原来的
?
n倍,面积就变为原来的
?
?
mn倍。
哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:一个人若太具备感情,是会自伤及伤人的。的确如此。--安妮宝贝《素年锦时》哈尔滨开发区高考数学培训机构。。


哈尔滨开发区高考数学培训机构。
哈尔滨开发区高考数学培训机构。  哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:官再大,钱再多,阎王照样往里拖。。

中小学个性化辅导

哈尔滨开发区高考数学培训机构。。  哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:我不会依赖别人,因为我受够了失望。。四年级数学竞赛准备


一、知识复习
(一)数与运算
整数运算
四则运算的顺序要牢记,先乘除后加减,有括号先算括号里面的。例如在计算
(
3
+
5
×
2
)
(3+5×2)时,要先算乘法
5
×
2
=
10
5×2=10,再算加法
3
+
10
=
13
3+10=13。这部分知识在竞赛中可能会出现在简便运算或者混合运算的题目里。
简便运算方法多样,像加法交换律(
?
+
?
=
?
+
?
a+b=b+a)、结合律(
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c)),乘法交换律(
?
×
?
=
?
×
?
a×b=b×a)、结合律(
(
?
×
?
)
×
?
=
?
×
(
?
×
?
)
(a×b)×c=a×(b×c))和分配律(
?
×
(
?
+
?
)
=
?
×
?
+
?
×
?
a×(b+c)=a×b+a×c)等。例如:
454
+
999
×
999
+
545
454+999×999+545,可以把式子变形为
(
454
+
545
)
+
999
×
999
=
999
+
999
×
999
=
999
×
(
1
+
999
)
=
999
×
1000
=
999000
(454+545)+999×999=999+999×999=999×(1+999)=999×1000=999000。
小数运算
小数的加减法要注意小数点对齐,也就是相同数位对齐。例如计算
3.65
+
2.35
3.65+2.35时,将小数点对齐,然后按照整数加法计算,结果为
6.00
6.00即
6
6。
小数乘法要先按照整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。如
2.5
×
1.2
2.5×1.2,先算
25
×
12
=
300
25×12=300,因数共有两位小数,所以结果是
3.00
3.00即
3
3。
在小数除法中,如果除数是小数,要把除数转化为整数再除。例如
3.6
÷
0.12
3.6÷0.12,把除数
0.12
0.12变为
12
12,被除数变为
360
360,计算结果为
30
30。
(二)几何图形
平面图形
长方形和正方形
长方形的周长公式为
?
=
(
?
+
?
)
×
2
C=(a+b)×2(
?
a为长,
?
b为宽),面积公式为
?
=
?
×
?
S=a×b。比如长为
10
10厘米,宽为
6
6厘米的长方形,周长是
(
10
+
6
)
×
2
=
32
(10+6)×2=32厘米,面积是
10
×
6
=
60
10×6=60平方厘米。
正方形的周长公式为
?
=
4
?
C=4a(
?
a为边长),面积公式为
?
=
?
×
?
S=a×a。若正方形边长为
4
4厘米,周长就是
4
×
4
=
16
4×4=16厘米,面积是
4
×
4
=
16
4×4=16平方厘米。在竞赛中可能会涉及到图形的组合、重叠等情况,求阴影部分面积时就需要准确运用这些公式。如长方形和正方形重叠部分面积为
6
6平方厘米,长方形长
10
10厘米、宽
6
6厘米,正方形边长
4
4厘米,求阴影部分面积时,要先算出长方形和正方形总面积,再减去重叠部分面积。
三角形
三角形的面积公式为
?
=
1
2
?
?
S= 
2
1
?
 ah(
?
a为底,
?
h为高)。知道底和高就能求出面积,例如底为
8
8厘米,高为
6
6厘米的三角形,面积是
1
2
×
8
×
6
=
24
2
1
?
 ×8×6=24平方厘米。
立体图形(简单了解)
对于长方体,体积公式为
?
=
?
×
?
×
?
V=a×b×c(
?
a、
?
b、
?
c分别为长方体的长、宽、高),表面积公式为
?
=
(
?
?
+
?
?
+
?
?
)
×
2
S=(ab+ac+bc)×2。
正方体的体积公式为
?
=
?
×
?
×
?
=
?
3
V=a×a×a=a 
3
 ,表面积公式为
?
=
6
?
2
S=6a 
2
 (
?
a为正方体的棱长)。
(三)规律与推理
数字规律
要学会观察数字之间的关系,如等差数列(相邻两个数的差相等),像数列
3
3,
6
6,
9
9,
12
12,
15
15,
18
18,
21
21就是公差为
3
3的等差数列。
还有等比数列(相邻两个数的比相等),例如数列
2
2,
6
6,
18
18,
54
54,
162
162,
486
486就是公比为
3
3的等比数列。在竞赛中会给出一组数字,要求找出规律并填写空缺的数字。
逻辑推理
例如会给出一些人物关系和条件,让判断谁是谁。像小王、小张、小李在一起,小李比战士的年龄大,小王和农民不同岁,农民比小张的年龄小,通过这些条件推理出谁是工人、谁是农民、谁是战士等类似的逻辑推理题。
二、解题技巧
(一)认真审题
仔细阅读题目中的每一个字,理解题目所表达的意思。比如是求周长还是面积,是求总和还是平均数等。
对于较长的题目,可以将关键信息标记出来,避免遗漏重要条件。
(二)尝试多种方法
如果一种解题方法行不通,可以尝试换一种思路。例如在计算图形面积时,可能直接计算比较困难,这时候可以考虑用割补法,将图形转化为更容易计算面积的形状。
在做数与运算的题目时,既可以按照常规方法计算,也可以思考是否能运用简便算法。
(三)检查答案
做完题目后,要对答案进行检查。对于计算类题目,可以重新计算一遍,看是否得到相同的结果。
对于应用题,要检查答案是否符合题意,单位是否正确等。
三、心态调整
保持积极乐观的心态,相信自己经过努力准备能够取得好成绩。不要因为竞赛有难度而过于紧张,紧张可能会导致在考试中发挥失常。
可以把竞赛当成一次检验自己学习成果和提升自己能力的机会,而不是单纯地追求名次。
哈尔滨开发区高考数学培训机构。  哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:人生的路,说长也很长,说短也很短。偶遇不幸或挫败只能证明某一时候某一方面的不足或做得不够 。哈尔滨开发区高考数学培训机构。。
哈尔滨开发区高考数学培训机构。

哈尔滨中小学辅导,哈尔滨小学补习班,哈尔滨初中辅导班,哈尔滨高中生辅导,哈尔滨学大教育一对一经典语录:不要只因一次挫败,就忘记你原先决定想达到的远方。哈尔滨开发区高考数学培训机构。。预约免费试听课:400-6169-685.

  • 相关阅读