欢迎来到三人行教育网,代理招生网站!

全国切换城市

咨询热线 400-6169-615

位置:三人行教育网,代理招生网站 > 新闻资讯 > 教育新闻 > 教育要闻 >  三水高二化学辅导机构。!

三水高二化学辅导机构。!

来源:三人行教育网,代理招生网站

2025-05-07 01:17:03|已浏览:12次

三水高二化学辅导机构。!


三水高二化学辅导机构。!  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:人生六话:和上司说美话,和下属说丑话,和老婆说谎话,和情人说瞎话,和熟人说笑话,和生人说鬼话。。


三水高二化学辅导机构。!佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:1岁前的人生是父母给的,1岁后的人生是自己给的。别把自己的窘境迁怒于别人,我们唯一可以抱怨的,是不够努力的自己。当理由找得越来越无懈可击,成功就离你越来越远了。失败没有借口,担当才是成功的前提。--苏芩。小数除法竖式计算技巧


一、除数是整数的小数除法竖式计算技巧
按照整数除法计算
按照整数除法的计算方法进行计算,从最高位开始除起,若除不了,那么就用最高位和下一位合成一个数来除,直到能除以除数为止。例如计算
43.4
÷
31
43.4÷31,先看被除数的最高位
4
4,
4
4除以
31
31不够除,就看前两位
43
43,
43
43除以
31
31商
1
1余
12
12,再把下一位
4
4落下来变成
124
124继续除,商
4
4,结果是
1.4
1.4。
对齐小数点
商的小数点要与被除数的小数点对齐。比如
29.7
÷
11
=
2.7
29.7÷11=2.7,在计算过程中,算出商为
27
27后,要把小数点与被除数
29.7
29.7的小数点对齐,得到
2.7
2.7。
余数添0继续除
当除到被除数的末尾仍有余数时,在余数后面添
0
0继续除。例如
7.28
÷
13
7.28÷13,
72
72除以
13
13商
5
5余
7
7,把
8
8落下来是
78
78,继续除得
6
6,结果是
0.56
0.56。
如果在计算过程中,哪一位上不够商
1
1,就在那一位上商
0
0占位。
二、除数是小数的小数除法竖式计算技巧
转化为整数除法
先把除数变成整数,除数扩大到原来的多少倍(即小数点向右移动几位),被除数也要扩大到原来的多少倍(即小数点也向右移动几位,位数不够的用
0
0补)。例如计算
76.8
÷
0.5
76.8÷0.5,除数
0.5
0.5小数点向右移动一位变成
5
5,被除数
76.8
76.8小数点也向右移动一位变成
768
768,然后按照除数是整数的除法进行计算,结果为
153.6
153.6。
规范书写
在竖式中,把除数写好后,用像约分时一样的斜线把除数的小数点划掉,同时划去被除数的小数点,按除数扩大的倍数,重新点上被除数的小数点,若扩大后被除数为整数则不用再点,但有时根据需要还要在被除数后面补上零。例如计算
0.54
÷
0.18
0.54÷0.18,除数
0.18
0.18变成
18
18,被除数
0.54
0.54变成
54
54,然后进行计算,商为
3
3。  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:表面都是心连心,背后都在玩脑筋。三水高二化学辅导机构。!。

三水高二化学辅导机构。!


三水高二化学辅导机构。!

三水高二化学辅导机构。!五年级方程应用题实例解析


一、和倍问题实例解析
例:某商场暑假期间卖出的冰箱和空调共572台,卖出的空调数量是冰箱的1.2倍,卖出冰箱和空调各多少台(用方程解答)
设未知数:设卖出冰箱
?
x台,因为卖出的空调数量是冰箱的
1.2
1.2倍,所以卖出空调
1.2
?
1.2x台。
找等量关系:冰箱数量 + 空调数量 = 总共卖出的数量,即
?
+
1.2
?
=
572
x+1.2x=572。
解方程:
2.2
?
=
572
2.2x=572,
?
=
572
÷
2.2
=
260
x=572÷2.2=260,则空调数量为
1.2
×
260
=
312
1.2×260=312台。
例:一幅画框用了2.4米的木条,这幅画的长是宽的2倍。这幅画的长、宽分别是多少(列方程解决)
设未知数:设这幅画的宽为
?
x米,那么长为
2
?
2x米。
找等量关系:长方形画框周长 =(长 + 宽)×2,可得到方程
(
2
?
+
?
)
×
2
=
2.4
(2x+x)×2=2.4。
解方程:
6
?
=
2.4
6x=2.4,
?
=
0.4
x=0.4米,长为
2
×
0.4
=
0.8
2×0.4=0.8米。
二、差倍问题实例解析
例:火箭的速度是超音速飞机的9倍,火箭每秒比超音速飞机飞行快4千米,火箭和超音速飞机每秒分别飞行多少千米(列方程解答)
设未知数:设超音速飞机每秒飞行
?
x千米,那么火箭每秒飞行
9
?
9x千米。
找等量关系:火箭速度 - 超音速飞机速度 = 速度差,即
9
?
?
?
=
4
9x?x=4。
解方程:
8
?
=
4
8x=4,
?
=
0.5
x=0.5千米,火箭速度为
9
×
0.5
=
4.5
9×0.5=4.5千米/秒。
例:某学校的四年级学生比五年级少80人,五年级人数是四年级的1.4倍。四、五年级各有学生多少人
设未知数:设四年级有
?
x人,则五年级有
1.4
?
1.4x人。
找等量关系:五年级人数 - 四年级人数 = 80,即
1.4
?
?
?
=
80
1.4x?x=80。
解方程:
0.4
?
=
80
0.4x=80,
?
=
200
x=200人,五年级人数为
1.4
×
200
=
280
1.4×200=280人。
三、工程问题实例解析
例:工程队开凿一条长为1000米的隧道,原计划每天开凿1000÷15 = 66.67米,余下的用10天完成,设平均每天应开凿
?
x米,则方程为15×66.67+10x = 1000
设未知数:设余下的平均每天开凿
?
x米。
找等量关系:原计划开凿的长度 + 余下10天开凿的长度 = 隧道总长度。
解方程:
15
×
66.67
+
10
?
=
1000
15×66.67+10x=1000,
1000.05
+
10
?
=
1000
1000.05+10x=1000,
10
?
=
?
0.05
10x=?0.05,
?
=
?
0.005
x=?0.005(这里数据存在一定的计算误差,实际按照给定方程思路求解)。
四、盈亏问题实例解析
例:学校安排学生到会议室听报告,如果每3人坐一条长椅,则剩下48人没有座位;如果每5人坐一条长椅,则刚好空出2条长椅。参加会议的学生有多少人
设未知数:设有
?
x条长椅。
找等量关系:两种坐法的学生人数是相等的。第一种坐法学生人数为
3
?
+
48
3x+48,第二种坐法学生人数为
5
×
(
?
?
2
)
5×(x?2),则方程为
3
?
+
48
=
5
×
(
?
?
2
)
3x+48=5×(x?2)。
解方程:
3
?
+
48
=
5
?
?
10
3x+48=5x?10,
2
?
=
58
2x=58,
?
=
29
x=29。那么学生人数为
3
×
29
+
48
=
135
3×29+48=135人。  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:时间是宝贵的,抓住了时间就抓住了成功。。


三水高二化学辅导机构。!

三水高二化学辅导机构。!。

佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:地球是圆的,有些看上去是终点的地方,也许只是起点。三水高二化学辅导机构。!四年级数学速算练习题


以下是一些四年级数学速算练习题:

一、加法运算
简单加法
34
+
23
=
34+23= 
57
57
56
+
12
=
56+12= 
68
68
45
+
30
=
45+30= 
75
75
进位加法
29
+
36
=
29+36= 
65
65
48
+
25
=
48+25= 
73
73
57
+
38
=
57+38= 
95
95
二、减法运算
简单减法
56
?
23
=
56?23= 
33
33
78
?
15
=
78?15= 
63
63
89
?
50
=
89?50= 
39
39
退位减法
72
?
38
=
72?38= 
34
34
80
?
47
=
80?47= 
33
33
91
?
56
=
91?56= 
35
35
三、乘法运算
一位数乘两位数
3
×
24
=
3×24= 
72
72
5
×
16
=
5×16= 
80
80
7
×
12
=
7×12= 
84
84
整十数乘法
20
×
3
=
20×3= 
60
60
40
×
5
=
40×5= 
200
200
30
×
6
=
30×6= 
180
180
四、除法运算
简单除法
48
÷
6
=
48÷6= 
8
8
72
÷
8
=
72÷8= 
9
9
90
÷
10
=
90÷10= 
9
9
有余数的除法
50
÷
7
=
50÷7= 
7
?
?
1
7??1
65
÷
9
=
65÷9= 
7
?
?
2
7??2
80
÷
11
=
80÷11= 
7
?
?
3
7??3
。  佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:抓住现在,告别面朝黄土背朝天;天道酬勤,迎来会当凌绝顶的辉煌。三水高二化学辅导机构。!.



三水高二化学辅导机构。!

佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:很多时候,自己的痛苦在自己的心里,自己的幸福却在别人眼里。。数的整除特性探究方法


一、从定义出发探究
明确整除的定义
对于两个整数
?
a、
?
(
?

0
)
d(d

=0),若存在一个整数
?
p,使得
?
=
?
?
a=pd成立,则称
?
d整除
?
a,或
?
a被
?
d整除,记作
?

?
d∣a。这是探究数的整除特性的基础定义。通过这个定义,可以进一步推导出数的整除相关性质和判定方法等。例如,当判断一个数是否能被另一个数整除时,可以看是否能找到满足定义中的
?
p值。
探究整除的性质
性质1:若
?

?
b∣a,则
?

(
?
?
)
b∣(?a),且对任意的非零整数
?
m有
?
?

?
?
bm∣am。例如,如果
3

6
3∣6,那么
3

(
?
6
)
3∣(?6),并且对于
?
=
2
m=2,
3
×
2

6
×
2
3×2∣6×2即
6

12
6∣12。
性质2:若
?

?
a∣b,
?

?
b∣a,则

?

=

?

∣a∣=∣b∣。比如
2

?
2
2∣?2且
?
2

2
?2∣2,那么

2

=

?
2

=
2
∣2∣=∣?2∣=2。
性质3:若
?

?
b∣a,
?

?
c∣b,则
?

?
c∣a。假设
3

6
3∣6,
1

3
1∣3,那么
1

6
1∣6。
性质4:若
?

?
?
b∣ac,而
(
?
,
?
)
=
1
(a,b)=1(
(
?
,
?
)
=
1
(a,b)=1表示
?
a、
?
b互质),则
?

?
b∣c。例如
2

3
×
4
2∣3×4,因为
2
2与
3
3互质,所以
2

4
2∣4。
性质5:若
?

?
?
b∣ac,而
?
b为质数,则
?

?
b∣a,或
?

?
b∣c。比如
3

6
×
5
3∣6×5,
3
3是质数,所以
3

6
3∣6或者
3

5
3∣5。
性质6:若
?

?
c∣a,
?

?
c∣b,则
?

(
?
?
+
?
?
)
c∣(ma+nb),其中
?
m、
?
n为任意整数(这一性质还可以推广到更多项的和)。例如
2

4
2∣4,
2

6
2∣6,那么对于
?
=
1
m=1,
?
=
1
n=1,
2

(
1
×
4
+
1
×
6
)
=
2

10
2∣(1×4+1×6)=2∣10。
二、按数字规律探究
2、5的整除特性
一个整数的末尾一位数能被
2
2或
5
5整除,则这个数就能被
2
2或
5
5整除。例如
12
12的末位数字
2
2能被
2
2整除,所以
12
12能被
2
2整除;
15
15的末位数字
5
5能被
5
5整除,所以
15
15能被
5
5整除。
4、25的整除特性
一个整数的末尾两位数能被
4
4或
25
25整除,则这个数就能被
4
4或
25
25整除。比如
124
124,末两位
24
=
4
×
6
24=4×6,能被
4
4整除,所以
124
124能被
4
4整除;
175
175,末两位
75
=
25
×
3
75=25×3,能被
25
25整除,所以
175
175能被
25
25整除。
8、125的整除特性
一个整数的末尾三位数能被
8
8或
125
125整除,则这个数就能被
8
8或
125
125整除。例如
1128
1128,末三位
128
=
8
×
16
128=8×16,能被
8
8整除,所以
1128
1128能被
8
8整除;
1125
1125,末三位
125
=
125
×
1
125=125×1,能被
125
125整除,所以
1125
1125能被
125
125整除。
3、9的整除特性
能被
9
9和
3
3整除的数的特征,如果各位上的数字和能被
9
9或
3
3整除,则这个数能被
9
9或
3
3整除。比如
123
123各位数字之和
1
+
2
+
3
=
6
1+2+3=6,
6
6能被
3
3整除,所以
123
123能被
3
3整除;
189
189各位数字之和
1
+
8
+
9
=
18
1+8+9=18,
18
18能被
9
9整除,所以
189
189能被
9
9整除。
7、11、13的整除特性
一个数的末三位数与末三位以前的数字所组成的数之差能被
7
7,
11
11或
13
13整除,则这个数字就能被
7
7、
11
11、
13
13整除。例如
123123
123123,末三位
123
123,末三位以前的数字组成的数是
123
123,它们的差
123
?
123
=
0
123?123=0,
0
0能被
7
7、
11
11、
13
13整除,所以
123123
123123能被
7
7、
11
11、
13
13整除。
11的整除特性(另一种)
一个整数的奇数位上的数字和与偶数位上的数字之和的差〔大减小〕能被
11
11整除。例如
1331
1331,奇数位数字和
1
+
3
=
4
1+3=4,偶数位数字和
3
+
1
=
4
3+1=4,它们的差
4
?
4
=
0
4?4=0,能被
11
11整除,所以
1331
1331能被
11
11整除。
三、通过实例探究
在数学运算中的探究
在解决数学运算问题时,可以根据数的整除特性来简化计算或者判断答案的合理性。例如在数量关系题目中,如果已知条件涉及到一些特殊数字,就可以利用这些数字的整除特性快速解题。如在计算参赛总人数时,如果东区参赛人数占总人数的
1
5
5
1
?
 ,东区参赛人数的
1
3
3
1
?
 获奖,那么总人数要能够被
3
3、
5
5整除。根据数的整除判定,在给定的范围(超过
100
100人,不到
200
200人)内找出符合条件的数。通过这种实例,可以探究数的整除特性在实际运算中的应用方式和价值。
在数字组合中的探究
对于一些需要组成满足整除条件的数字的问题,也可以探究数的整除特性。比如从
0
0,
4
4,
9
9,
5
5这四个数中任选三个排列成能同时被
2
2,
5
5整除的三位数,就需要根据能被
2
2和
5
5整除的数的末尾数字特征(末尾数字是
0
0)来进行组合数字的探究,从而找出符合要求的数字组合,进一步深入理解数的整除特性在数字组合方面的体现。
佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:时间告诉我,无理取闹的年龄过了,该懂事了。三水高二化学辅导机构。!。  



佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:没人能消除你的疼痛,所以,别让别人带走你的快乐。三水高二化学辅导机构。!。预约免费试听课:400-6169-685.


  • 相关阅读