咨询热线 400-6169-615
2025-05-07 12:36:52|已浏览:19次
禅城高二语文暑假班。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:骏马无腿难走路,人无理想难进步。禅城高二语文暑假班。!。中小学教育—个性化一对一辅导教育品牌!
教育品牌 特色服务 教育经验 覆盖城市 骨干教师 受益学生 中小学教育全日制课程 特色课程Special course 个性化学习 / 个性化小组课 全国免费咨询热线400-6169-615.
禅城高二语文暑假班。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:失败并不意味着你浪费了时间和生命,而是表明你有理由重新开始。。除法应用题生活实例讲解
一、平均分问题
(一)将物品平均分配到若干份
实例:妈妈买了15个苹果,要平均分给3个小朋友,每个小朋友能得到几个苹果?
分析:这里知道苹果的总数是15个,要把这些苹果平均分成3份,求每份是多少,这是典型的“平均分”问题,用除法计算。算式为
15
÷
3
=
5
15÷3=5(个)。每个小朋友能得到5个苹果。这个例子体现了把一个总数按照给定的份数进行平均分配,每份的数量就是除法的结果,也就是用总数除以份数得到每份数。这种类型的问题在生活中很常见,比如将一些文具平均分给几个同学等情况。
实例:学校组织植树活动,共有20棵树苗,要平均种在4个区域,每个区域种几棵树苗?
分析:总数是20棵树苗,要分成4个区域,同样是求每份是多少,用除法。算式为
20
÷
4
=
5
20÷4=5(棵)。每个区域种5棵树苗。这说明当我们要把一定数量的物品平均分配到若干个地方或者若干个人时,就可以用除法来计算每个地方或者每个人能得到的数量。
(二)已知每份数量,求份数
实例:有18个鸡蛋,每个盒子能装6个鸡蛋,需要几个盒子才能装完?
分析:这里知道鸡蛋的总数是18个,每份的数量是6个(每个盒子装6个),要求的是能分成几份(需要几个盒子),这是求18里面有几个6的问题,用除法计算。算式为
18
÷
6
=
3
18÷6=3(个)。需要3个盒子才能装完。这种情况在生活中比如将一些物品按照固定数量进行打包,计算需要多少个包装时就会用到。
实例:老师有30本练习本,每个学生发5本,可以发给几个学生?
分析:总数是30本练习本,每份是5本(每个学生发5本),求能发给几个学生也就是求30里面有几个5,用除法。算式为
30
÷
5
=
6
30÷5=6(个)。可以发给6个学生。这表明当我们知道物品总数和每份的数量时,通过除法可以算出能分成多少份,在分配资源、按固定数量分配物品等场景中经常用到。
二、包含除问题
(一)计算数量关系中的倍数
实例:小明有24元钱,一支铅笔3元钱,小明的钱可以买几支铅笔?
分析:这是求24元里面包含几个3元的问题,也就是求24是3的几倍,用除法计算。算式为
24
÷
3
=
8
24÷3=8(支)。小明的钱可以买8支铅笔。在购物场景中,当我们想知道自己的钱能买多少单价已知的商品时,就会用到这种除法计算。
实例:一个工程队要修48米的路,每天修6米,需要修多少天?
分析:总数是48米的路,每天修6米,就是求48里面有几个6,用除法计算。算式为
48
÷
6
=
8
48÷6=8(天)。需要修8天。这在工程进度安排、计算工作时间等方面是常见的应用。
(二)比较数量关系中的比例
实例:A班有36名学生,B班有12名学生,A班学生人数是B班的几倍?
分析:这是求36是12的几倍的问题,用除法计算。算式为
36
÷
12
=
3
36÷12=3。A班学生人数是B班的3倍。在比较两个班级、两组数量等的倍数关系时,就会用到这种除法应用题。
实例:一块蛋糕重100克,另一块蛋糕重25克,重100克的蛋糕重量是25克蛋糕的几倍?
分析:求100克是25克的几倍,用除法。算式为
100
÷
25
=
4
100÷25=4。重100克的蛋糕重量是25克蛋糕的4倍。这种类型在比较不同物品的重量、数量等比例关系时经常用到。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:不到没有退路之时,你永远不会知道自己有多强大。禅城高二语文暑假班。!。
禅城高二语文暑假班。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:有大快乐的人,必有大哀痛;有大成功的人,必有大孤独;这就是情感的节奏。。中小学教育(一对一辅导)专注于学生学习能力的培养以及学生学科知识的辅导,中小学教育(一对一辅导)视教学质量为生命,受到许多学生和家长的认可。
中小学教育-专注个性化一对一辅导-免费试听入口
中小学教育秉承"以人为本、因材施教"的个性化教育理念,打造了包括个性化培训、全日制教育、职业教育、文化服务等在内的丰富业务模式. 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:两个人之间隔着几英尺的暮色。《了不起的盖茨比》
禅城高二语文暑假班。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:“要不是有雾,我们可以看见海湾对面你家的房子,”盖茨比说,“你家码头的尽头总有一盏通宵不灭的绿灯。” 黛西蓦然伸过胳臂去挽着他的胳臂,但他似乎沉浸在方才所说的话里。可能他突然想到那盏灯的巨大意义现在永远消失了。和那把他跟黛西分开的遥远距离相比较,那盏灯曾经似乎离她很近,几乎碰得着她。那就好像一颗星离月亮那么近一样。现在它又是码头上的一盏绿灯了。菲茨杰拉德《了不起的盖茨比》。
佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:所有的故事,都有一个结局。但幸运的是,在生活中,每个结局都会变成一个新的开始。禅城高二语文暑假班。!。行程问题中的等量关系
一、基本等量关系
路程、速度、时间关系:路程 = 速度×时间。这是行程问题最基本的等量关系,无论是简单的行程问题,还是复杂的相遇、追及等问题都以此为基础。例如,一辆汽车以每小时60千米的速度行驶3小时,那么行驶的路程就是60×3 = 180千米。
二、相遇问题中的等量关系
同时出发的相遇问题
等量关系:甲所走路程+乙所走路程 = 总路程。例如甲乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场。设乙机的速度为x千米/时,甲机速度是乙机的1.5倍,那么甲所走路程为0.5×1.5x千米,乙所走路程为0.5x千米,就有0.5×1.5x+0.5x = 750的等量关系。
不同时出发的相遇问题
等量关系:慢车所走路程+快车所走路程 = 总路程。例如甲乙两站间路程为450km,一列慢车从甲站开出,每小时行驶65km;一列快车从乙站开出,每小时行驶85km,快车先开30分钟。设慢车行驶了x小时两车相遇,那么慢车所走过的路程为65x千米,快车所走过的路程为(85x + 85×0.5)千米,等量关系为65x+(85x + 85×0.5)=450。
三、追及问题中的等量关系
同地不同时的追及问题
等量关系:追及者所走的路程 = 被追及者所走的路程。例如甲乙两人都从A地去B地,甲步行每小时走5千米,先走1.5小时,乙骑自行车走了50分两人同时到达目的地。设乙每小时骑x千米,乙所走过的路程为x千米,甲所走过的路程为(5×1.5+5)千米,等量关系为x = 5×1.5+5。
同时不同地的追及问题
等量关系:追及者所走的路程-被追及者所走路程 = 开始相距的路程。例如甲乙两人住处之间的路程为36km,某天他俩同时骑摩托车出发去某地,甲在乙后面,乙每小时骑52km,甲每小时骑70km。设经过x小时甲追上乙,甲所走过的路程为70x千米,乙所走过的路程为52x千米,等量关系为70x - 52x = 36。
四、环形跑道问题中的等量关系
同时同地同向出发
等量关系:快的 - 慢的 = 多跑一圈或几圈的路程。
同时同地反向出发
等量关系:双方所跑路程之和 = 环形跑道一圈的长度。
五、往返问题中的等量关系
等量关系:去时路程 = 回时路程。
六、航行问题(飞行问题)中的等量关系
船的航行问题
船在静水中速度+水速 = 船的顺水速度。
船在静水中速度 - 水速 = 船的逆水速度。
飞机的飞行问题
飞机的飞行速度+风速 = 飞机顺风时的速度。
飞机的飞行速度 - 风速 = 飞机逆风时的速度。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:一个女人,倘若得不到异性的爱,就也得不到同性的尊重,女人就是这点贱。禅城高二语文暑假班。!。
禅城高二语文暑假班。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:没用的东西,再便宜也不要买;不爱的人,再寂寞也不要依赖。耐得住寂寞,才守得住繁华。禅城高二语文暑假班。!。欢迎预约就近校区免费测评体验课。预约免费试听课:400-6169-685.