咨询热线 400-6169-615
2025-05-07 15:40:57|已浏览:11次
增城一年级数学一对一。
专注中小学辅导21年的机构。增城一年级数学一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:我没时间去讨厌那些讨厌我的人,因为我在忙着爱那些爱着我的人。。
全国校区,方便就近入学。
这里的老师经验丰富,教学方法独特。
每个孩子都能得到个性化辅导。
提高学习效率,轻松应对考试。
课程内容紧贴教材,全面覆盖。增城一年级数学一对一。
针对性练习,帮助孩子巩固知识点。
小班教学,保证每个孩子都能得到关注。
课后还有答疑服务,解决孩子的疑问。
家长也能实时了解孩子的学习进度。
报名简单,线上线下都可以。
现在就来咨询,名额有限,抓紧时间!
让孩子的学习更上一层楼,选择我们不会错!
我们期待与您一起见证孩子的成长与进步。增城一年级数学一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:繁华只是路过,与哀家无关。。
初一 | 初二 | 初三 | 中考 |
初一语文、数学、英语、物理、化学、文综培训 |
初二语文、数学、英语、物理、化学、文综培训 |
初三语文、数学、英语、物理、化学、文综培训 |
中考语文、数学、英语、物理、化学、文综培训,中考冲刺班,中考复读。 |
高一 | 高二 | 高三 | 高考 |
高一语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高二语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高三语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高考语文、数学、英语、物理、化学、历史、政治、地理,生物培训,高考冲刺,高考复读,新高三集训营,高三复读。 |
小学 | 学科1 | 学科2 | 学科3 |
一年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
二年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
三年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
四年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
五年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
六年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
增城一年级数学一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:没有人会喜欢孤独,只是比起失望、随欲,以及冷热交替后的纵横来说,孤独会让人更踏实。数学应用题解题思路训练方法
一、常见数学应用题解题思路训练方法
(一)图解法
通过图示来显示应用题中的数量关系,从而清晰解题思路。例如对于涉及行程、工程等问题,将相关数量关系用线段图等形式表示出来。比如两车同时由两地相向开出的问题,可画出线段示意图,从不同角度观察图中的数量关系,就会得到不同解题思路:
从客车这边看:50千米正好与3/5和“1 - 3/4 = 1/4”的差相对应,列式:50÷[3/5-(1 - 3/4)]。
从两头往中间看:50千米又是被夹在中间的一段,列式:50÷[1-(1 - 3/4)-(1 - 3/5)]。
从整体看,50千米就是3/4与3/5相互重叠的部分,列式:50÷(3/4 + 3/5 - 1)。
(二)演示操作法
利用直观教具演示:通过直观教具(包括幻灯片)的演示来突出解题关键。例如在火车过桥问题中,教师可以引导学生用实物来操作演示,将文具盒当大桥,用笔当火车,在课桌上模仿火车过桥的情景。可以清楚地看出火车从车头上桥到车尾离桥,所行的路程等于桥长与车长的和,进而列出算式:(610 + 140)÷(9000÷60)。
引导学生操作学具:让学生自己动手操作学具,发现解题线索。
(三)假设法
假设一个主观上所需要的条件,从事实与假设之间的矛盾中寻求正确答案。例如在小明买练习本和铅笔的问题中,引导学生用一种物品替换另一种物品,使数量关系单一化。
假设3支铅笔换成3本练习本,求出每本练习本的价钱,列式为(总价变化值)÷(4 + 3)。
如果把4本练习本换成4支铅笔,求出每支铅笔的价钱,列式为(总价变化值)÷(4 + 3)。
(四)逆推法
对于某些特殊结构的应用题作反向思考,采取相逆的运算探索解题思路。例如在分练习本的问题中:
先按照题意列出事情发展的过程(→)本子→甲得到总数的1/2少→余下的→总数←1本←本数←乙得到余下的→丙得到8本1/2多1本←。
然后列出逆推思路图(←),从而得到解题思路:
根据丙得到的本数和乙得到余下的1/2多1本,求出余下的本数,列式:(8 + 1)÷1/2 = 18(本)。
根据余下的本数和甲得到总数的1/2少1本,求出总数,列式:(18 - 1)÷1/2。
(五)变更法
对应用题中的条件、结论或问题的叙述方式做变更。例如客车从甲地到乙地需行12小时,货车从乙地到甲地需行15小时,两车同时相向而行,途中货车因故停留3小时的问题。引导学生把“货车停留3小时”变更为“客车先出发3小时”,这样这道题的解题思路就清晰了,列式:(1 - 1/12×3)÷(1/12 + 1/15)。
(六)类比法
从要解决的问题联想到与它类似的一个熟悉的问题,用熟悉问题的解题思路解决所要解决的问题。
二、解题思路训练的一般步骤
理解题意
从题目中提取有用信息,如数字、数量关系、图形结构等内容。这就像在一堆信息中筛选出关键元素,例如在应用题中找出已知量和未知量,是解题的基础步骤。
提取相关知识
从记忆储存中搜索与题目相关的公式、定理、基本模式等。例如在解决几何应用题时,需要回忆起相关的几何定理;在解决行程问题时,要想到速度、时间、路程的关系公式等。
信息重组
将上述两组信息进行有效重组,构建一个合乎逻辑的结构。比如把题目中的数量代入到相关公式中,或者根据已知定理构建等式关系等,从而得出解题思路。增城一年级数学一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:当一个人感到很知足,心不烦,身不疲,无所求,心能安的时候,快乐就在其中。当一个人感到吃得下,玩得动,睡得好,没牵挂,很满足的时候,幸福就在其中。增城一年级数学一对一。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你可以随时转身,但是不能一直后退。增城一年级数学一对一。。预约就近校区免费试听课:400-6169-685