咨询热线 400-6169-615
2025-05-07 19:16:21|已浏览:13次
佛山学大二年级数学培训。!
专注中小学辅导21年的机构。佛山学大二年级数学培训。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:前方路灯不亮,试着换个方向。莫紧张,莫迷茫。。
全国校区,方便就近入学。
这里的老师经验丰富,教学方法独特。
每个孩子都能得到个性化辅导。
提高学习效率,轻松应对考试。
课程内容紧贴教材,全面覆盖。佛山学大二年级数学培训。!
针对性练习,帮助孩子巩固知识点。
小班教学,保证每个孩子都能得到关注。
课后还有答疑服务,解决孩子的疑问。
家长也能实时了解孩子的学习进度。
报名简单,线上线下都可以。
现在就来咨询,名额有限,抓紧时间!
让孩子的学习更上一层楼,选择我们不会错!
我们期待与您一起见证孩子的成长与进步。佛山学大二年级数学培训。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:烦恼不过夜,健忘才幸福。。
初一 | 初二 | 初三 | 中考 |
初一语文、数学、英语、物理、化学、文综培训 |
初二语文、数学、英语、物理、化学、文综培训 |
初三语文、数学、英语、物理、化学、文综培训 |
中考语文、数学、英语、物理、化学、文综培训,中考冲刺班,中考复读。 |
高一 | 高二 | 高三 | 高考 |
高一语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高二语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高三语文、数学、英语、物理、化学、历史、政治、地理,生物培训 |
高考语文、数学、英语、物理、化学、历史、政治、地理,生物培训,高考冲刺,高考复读,新高三集训营,高三复读。 |
小学 | 学科1 | 学科2 | 学科3 |
一年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
二年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
三年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
四年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
五年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
六年级 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
语文、数学、英语辅导 |
佛山学大二年级数学培训。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:这世上最幸运的三件事:其实是,能有一对开明的父母,还有能欣赏并懂得你的爱人,以及明白自己到底要什么爱什么拒绝什么。几何题型中的常见错误分析
一、解析几何中的常见错误
(一)忽视斜率不存在的情况
在解析几何中,当涉及直线与曲线相交的问题时,若设直线方程为点斜式
?
=
?
(
?
?
?
0
)
+
?
0
y=k(x?x
0
?
)+y
0
?
,就需要考虑斜率
?
k不存在的情况。例如:已知过点
(
?
4
,
0
)
(?4,0)作直线
?
l与圆
?
2
+
?
2
+
2
?
?
4
?
?
20
=
0
x
2
+y
2
+2x?4y?20=0交于
?
A、
?
B点,弦
?
?
AB长为
8
8。如果直接设直线
?
l的方程为
?
=
?
(
?
+
4
)
y=k(x+4)(点斜式),然后进行计算,就未考虑直线
?
l斜率不存在情况,从而导致错误。实际上,当直线
?
l斜率不存在时,直线
?
l的方程为
?
=
?
4
x=?4,此时弦
?
?
AB长也为
8
8,这是符合题意的解
1
1()。
(二)忽视方程本身限制
截距式方程的限制
对于直线方程的截距式
?
?
+
?
?
=
1
a
x
?
+
b
y
?
=1,其使用条件是
?
≠
0
a
=0且
?
≠
0
b
=0。例如:直线
?
l经过
?
(
2
,
3
)
P(2,3),且在
?
x,
?
y轴上的截距相等。如果直接设直线方程为
?
?
+
?
?
=
1
a
x
?
+
a
y
?
=1(截距式),又过
?
(
2
,
3
)
P(2,3),得出
2
?
+
3
?
=
1
a
2
?
+
a
3
?
=1,求得
?
=
5
a=5,得到直线方程为
?
+
?
?
5
=
0
x+y?5=0,这就忽视了直线过原点(
?
=
?
=
0
a=b=0)的情况。当直线过
(
0
,
0
)
(0,0)时,此时斜率为
?
=
3
?
0
2
?
0
=
3
2
k=
2?0
3?0
?
=
2
3
?
,直线方程为
?
=
3
2
?
y=
2
3
?
x。综上,所求直线方程为
?
=
3
2
?
y=
2
3
?
x或$x + y - 5 = 0$$$1$$()。
(三)忽视题目隐含条件
轨迹方程中的隐含条件
在求轨迹方程时,求出方程后要考虑轨迹上的点是否都符合题意。例如在
△
?
?
?
△ABC中,
?
?
=
8
BC=8,另两边长之差为
6
6,求顶点
?
A的轨迹方程。以
?
?
BC所在直线为
?
x轴,
?
?
BC的中点为坐标原点建立直角坐标系,因为
?
?
BC是定值,点
?
A的轨迹是以
?
B、
?
C为焦点的双曲线,由已知得
?
=
3
a=3,
?
=
4
c=4,
?
2
=
?
2
?
?
2
=
7
b
2
=c
2
?a
2
=7。但由于
?
A、
?
B、
?
C为三角形的三个顶点,即
?
A、
?
B、
?
C三点不能共线,所以点
?
A不能落在
?
x轴上,其轨迹方程为
?
2
9
?
?
2
7
=
1
(
?
≠
0
)
9
x
2
?
?
7
y
2
?
=1(y
=0),如果不考虑这个隐含条件就会导致结果错误
1
1()。
(四)忽视曲线本身范围的限制
椭圆上点的范围限制
例如设椭圆的中心是坐标原点,求椭圆方程。设椭圆上的点
(
?
,
?
)
(x,y)到某点
?
P的距离为
?
d,依题意可设椭圆方程为
?
2
?
2
+
?
2
?
2
=
1
a
2
x
2
?
+
b
2
y
2
?
=1,然后根据距离公式求
?
d关于
?
x、
?
y的表达式,再求
?
d的最值来确定
?
a、
?
b的值。在求最值过程中,如果不考虑
?
y的取值范围(
?
?
≤
?
≤
?
?b≤y≤b)就会出错。比如直接由当
?
=
?
y=b时
?
2
d
2
有最大值这步推理是错误的,因为没有考虑到
?
y的取值范围。应分类讨论,根据椭圆上点的范围限制来准确求最值从而确定椭圆方程
1
1()。
二、几何证明题中的常见错误
(一)偷换概念
在证明平行关系中的偷换概念
在几何证明中,把不属于某一概念外延的事物误认为属于这一概念,从而得出错误的证明。例如:已知
?
?
∥
?
?
AB∥CD,
?
?
MG、
?
?
HN分别为
∠
?
?
?
∠EGA、
∠
?
?
?
∠EHC的平分线,求证
?
?
∥
?
?
GM∥HN。错证:因为
?
?
∥
?
?
AB∥CD所以
∠
?
?
?
=
∠
?
?
?
∠EGA=∠EHC,又
?
?
MG、
?
?
HN分别为
∠
?
?
?
∠EGA、
∠
?
?
?
∠EHC的平分线,所以
∠
?
?
?
=
∠
?
?
?
∠MGA=∠NHC(这里把
∠
?
?
?
∠MGA、
∠
?
?
?
∠NHC当成
?
?
GM、
?
?
NH被
?
?
EF所截得的同位角),得出
?
?
∥
?
?
GM∥HN。正确的证法是把上面证法中“
∠
?
?
?
=
∠
?
?
?
∠MGA=∠NHC”换成“
∠
?
?
?
=
∠
?
?
?
∠MGE=∠NHE”即可
4
4()。
在相似三角形证明中的偷换概念
例如在梯形
?
?
?
?
ABCD中,
?
?
∥
?
?
AD∥BC,两对角线交于
?
O,过
?
O作
?
?
∥
?
?
EF∥BC,分别交
?
?
AB、
?
?
CD于
?
E、
?
F,求证
?
?
=
?
?
OE=OF。错证:因为
?
?
∥
?
?
∥
?
?
EF∥BC∥AD,所以
△
?
?
?
~
△
?
?
?
△AOE~△ACB,
△
?
?
?
~
△
?
?
?
△DOF~△DBC,然后根据相似三角形的对应边成比例得出错误结论。实际上这里是把不是相似三角形对应边的线段当成对应边了,犯了偷换概念的错误。正确的证法是根据相似三角形的正确对应边成比例关系来证明
4
4()。
(二)虚假理由
错误运用定理
有些学生对有关的概念、定理没有真正的理解掌握,在证明时任意推广引申定理得出有利于论题成立的假判断作为论证的根据。例如:已知
△
?
?
?
△ABC中,
?
?
=
?
?
AB=AC,
?
?
AD为
∠
?
∠A的平分线,
?
?
⊥
?
?
DE⊥AB,
?
?
⊥
?
?
DF⊥AC垂足分别为
?
E、
?
F,求证
?
?
AD为
?
?
EF的中垂线。错证:因为
?
?
AD为
∠
?
∠A的平分线,
?
?
⊥
?
?
DE⊥AB,
?
?
⊥
?
?
DF⊥AC,所以
?
?
=
?
?
DE=DF(角平分线上的点到角两边的距离相等),然后得出
?
?
AD为
?
?
EF的中垂线(到线段两个端点距离相等的点在线段的垂直平分线上)。但由
?
?
=
?
?
DE=DF只可能推出
?
D为
?
?
EF的中垂线上的点,而过点
?
D的直线有无数条,故不能说明
?
?
AD为
?
?
EF的中垂线,犯了虚假理由的错误
4
4()。
三、小学数学几何初步知识中的常见错误
(一)概念不清
圆的对称轴概念
在涉及圆和扇形的题目中,会因概念不清导致错误。例如对圆的对称轴概念理解错误,认为圆的对称轴只有一条,就是那条把圆分成相等的两个半圆的直径,实际上任何一条直径都是圆的对称轴
2
2()。
(二)公式混淆
图形面积周长相关公式
在计算正方形、长方形、圆形的面积时,可能会混淆公式。例如用一根长
3.14
3.14米的绳子围成一个正方形、长方形、圆形,求它们中面积最大的图形。可能会误认为正方形面积最大,这可能是受一些直观图形的影响,而实际上通过计算会发现圆的面积最大
2
2()。
(三)单位进率不清楚
扇形圆心角与面积相关计算中的单位进率问题
在扇形的相关计算中,可能会因为单位进率不清楚而导致错误,例如在计算扇形面积时,如果涉及到角度与弧度的转换或者是对扇形占圆面积比例的计算时,单位进率不清楚就会得出错误结果。不过文档未给出具体例子
2
2()。佛山学大二年级数学培训。!佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:外貌拿来让别人认得你,内在拿来让别人记得你。佛山学大二年级数学培训。!
佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:突如其来的脾气,往往是积攒很久了的委屈。佛山学大二年级数学培训。!。预约就近校区免费试听课:400-6169-685