咨询热线 400-6169-615
2025-05-08 17:24:37|已浏览:9次
萝岗中考辅导。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:人有退路,就有些许安全感。 等到哪一天,你真没了退路, 你就发现眼前哪条路都能走, 也能通。萝岗中考辅导。。中小学教育—个性化一对一辅导教育品牌!
教育品牌 特色服务 教育经验 覆盖城市 骨干教师 受益学生 中小学教育全日制课程 特色课程Special course 个性化学习 / 个性化小组课 全国免费咨询热线400-6169-615.
萝岗中考辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:当你劝告别人时,若不顾及别人的自尊心,那么再好的言语都没有用的。。四年级数学速算技巧
一、乘法速算技巧
(一)一般两位数乘法
乘数个位与被乘数相加法
方法:乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。例如计算
15
×
17
15×17,
15
+
7
=
22
15+7=22(前积),
5
×
7
=
35
5×7=35(后积),结果就是
255
255。可以理解为
15
×
17
=
15
×
(
10
+
7
)
=
150
+
(
10
+
5
)
×
7
=
150
+
70
+
5
×
7
15×17=15×(10+7)=150+(10+5)×7=150+70+5×7,熟练后可直接用前面的简便算法
15
+
7
15+7,而不用
150
+
70
150+70。再如
17
×
19
17×19,
17
+
9
=
26
17+9=26,
7
×
9
=
63
7×9=63,即
260
+
63
=
323
260+63=323。
十位相同个位不同的两位数相乘
方法:被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。例如
43
×
46
43×46,
(
43
+
6
)
×
40
=
1960
(43+6)×40=1960(前积),
3
×
6
=
18
3×6=18(后积),结果就是
1960
+
18
=
1978
1960+18=1978。又如
89
×
87
89×87,
(
89
+
7
)
×
80
=
7680
(89+7)×80=7680(前积),
9
×
7
=
63
9×7=63(后积),结果为
7680
+
63
=
7743
7680+63=7743。
首位相同,两尾数和等于10的两位数相乘
方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积,没有十位用0补。例如
56
×
54
56×54,
(
5
+
1
)
×
5
=
30
(5+1)×5=30(前积),
6
×
4
=
24
6×4=24(后积),结果就是
3024
3024。再如
73
×
77
73×77,
(
7
+
1
)
×
7
=
56
(7+1)×7=56(前积),
3
×
7
=
21
3×7=21(后积),结果为
5621
5621。
首位相同,尾数和不等于10的两位数相乘
方法:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。例如计算
53
×
58
53×58,
5
×
5
=
25
5×5=25(前积),
(
3
+
8
)
×
5
=
55
(3+8)×5=55(中积,这里满十进一),
3
×
8
=
24
3×8=24(后积),结果就是
3074
3074。
被乘数首尾相同,乘数首尾和是10的两位数相乘
方法:乘数首位加1,得出的和与被乘数首位相乘,得数为前积,两尾数相乘,得数为后积,没有十位用0补。例如
(
3
+
1
)
×
6
=
24
(3+1)×6=24(前积),
6
×
7
=
42
6×7=42(后积),结果就是
2442
2442;又如
(
1
+
1
)
×
9
=
18
(1+1)×9=18(前积),
9
×
9
=
81
9×9=81(后积),结果为
1881
1881。
被乘数首尾和是10,乘数首尾相同的两位数相乘
方法:两首位相乘的积加上乘数的个位数,得数作为前积,两尾数相乘,得数作为后积,没有十位补0。例如
4
×
9
+
9
=
45
4×9+9=45(前积),
6
×
9
=
54
6×9=54(后积),结果就是
4554
4554;再如
8
×
3
+
3
=
27
8×3+3=27(前积),
2
×
3
=
6
2×3=6(后积),结果为
2706
2706。
两首位和是10,两尾数相同的两位数相乘
方法:两首位相乘,积加上一个尾数,得数作为前积,两尾数相乘(即尾数的平方),得数作为后积,没有十位补0。例如
7
×
3
+
8
=
29
7×3+8=29(前积),
8
×
8
=
64
8×8=64(后积),结果就是
2964
2964;又如
2
×
8
+
3
=
19
2×8+3=19(前积),
3
×
3
=
9
3×3=9(后积),结果为
1909
1909。
(二)特殊两位数乘法
个位是1的两位数相乘
方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。例如
51
×
31
51×31,
50
×
30
=
1500
50×30=1500,
50
+
30
=
80
50+30=80(这里数字0在不熟练的时候作为助记符,熟练后就可以不使用了),结果就是
1581
1581;又如
81
×
91
81×91,
80
×
90
=
7200
80×90=7200,
80
+
90
=
170
80+90=170,结果为
7371
7371。
求11 - 19的平方
方法:底数的个位与底数相加,得数为前积,底数的个位乘以个位相乘,得数为后积,满十前一。例如
17
×
17
17×17,
17
+
7
=
24
17+7=24(前积),
7
×
7
=
49
7×7=49(后积),结果就是
289
289。
个位是1的两位数的平方
方法:底数的十位乘以十位(即十位的平方),得为前积,底数的十位加十位(即十位乘以2),得数为后积,在个位加1。例如
71
×
71
71×71,
7
×
7
=
49
7×7=49(前积),
7
×
2
=
14
7×2=14(后积),结果就是
5041
5041。
个位是5的两位数的平方
方法:十位加1乘以十位,在得数的后面接上25。例如
35
×
35
35×35,
(
3
+
1
)
×
3
=
12
(3+1)×3=12,结果就是
1225
1225。
二、加法速算技巧
加法交换律和结合律
要善于观察题目,同时要有凑整意识。例如计算
5.7
+
3.1
+
0.9
+
1.3
5.7+3.1+0.9+1.3,利用加法交换律和结合律可变为
(
5.7
+
1.3
)
+
(
3.1
+
0.9
)
=
7
+
4
=
11
(5.7+1.3)+(3.1+0.9)=7+4=11。加法交换律为
?
+
?
=
?
+
?
a+b=b+a,加法结合律为
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c)。
三、减法速算技巧
减法的性质
用字母公式表示为
?
?
?
?
?
=
?
?
(
?
+
?
)
A?B?C=A?(B+C),同时注意逆进行。例如
7691
?
(
691
+
250
)
=
7691
?
691
?
250
=
7000
?
250
=
6750
7691?(691+250)=7691?691?250=7000?250=6750。
四、除法速算技巧
除法的性质
用字母公式表示为
?
÷
?
÷
?
=
?
÷
(
?
×
?
)
A÷B÷C=A÷(B×C),同时注意逆进行。例如
8.3
×
67
÷
8.3
÷
6.7
=
8.3
÷
8.3
×
67
÷
6.7
=
1
×
10
=
10
8.3×67÷8.3÷6.7=8.3÷8.3×67÷6.7=1×10=10。
接近整百的数的除法运算
这种题型需要拆数、转化等技巧配合。例如
302
÷
5
=
(
300
+
2
)
÷
5
=
300
÷
5
+
2
÷
5
=
60
+
0.4
=
60.4
302÷5=(300+2)÷5=300÷5+2÷5=60+0.4=60.4;
298
÷
5
=
(
300
?
2
)
÷
5
=
300
÷
5
?
2
÷
5
=
60
?
0.4
=
59.6
298÷5=(300?2)÷5=300÷5?2÷5=60?0.4=59.6。
五、其他速算技巧
带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,可以带符号搬家。例如
2.5
×
0.125
×
8
×
4
=
2.5
×
4
×
0.125
×
8
=
(
2.5
×
4
)
×
(
0.125
×
8
)
=
10
×
1
=
10
2.5×0.125×8×4=2.5×4×0.125×8=(2.5×4)×(0.125×8)=10×1=10。
乘法分配律法
分配法:括号里是加或减运算,与另一个数相乘,注意分配。例如
0.93
×
67
+
33
×
0.93
=
0.93
×
(
67
+
33
)
=
0.93
×
100
=
93
0.93×67+33×0.93=0.93×(67+33)=0.93×100=93。
提取公因式:例如
3
?
+
5
?
=
(
3
+
5
)
?
=
8
?
3x+5x=(3+5)x=8x。
注意构造:让算式满足乘法分配律的条件。
凑整法
用此方法时,需要注意观察,发现规律。还要注意“有借有还”。例如
9999
+
999
+
99
+
9
=
(
10000
?
1
)
+
(
1000
?
1
)
+
(
100
?
1
)
+
(
10
?
1
)
=
(
10000
+
1000
+
100
+
10
)
?
4
=
11106
9999+999+99+9=(10000?1)+(1000?1)+(100?1)+(10?1)=(10000+1000+100+10)?4=11106。
拆分法
拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如
2
2和
5
5,
4
4和
5
5,
4
4和
25
25,
8
8和
125
125等。分拆还要注意不要改变数的大小。例如
25
×
32
=
25
×
(
4
×
8
)
=
25
×
4
×
8
=
100
×
8
=
800
25×32=25×(4×8)=25×4×8=100×8=800。
利用“估算平均数”速算
例如
712
+
694
+
709
+
688
712+694+709+688,观察算式得到平均数
700
700,将每个数与平均数的差累计,可得
12
?
6
+
9
?
12
=
3
12?6+9?12=3,最后计算为
700
×
4
+
3
=
2803
700×4+3=2803。
熟记常用数据
例如乘法口诀表、圆周率、
1
1至
20
20的平方数、
20
20以内的质数表等等。这有助于在计算时快速得出结果。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:不发生点烂事,永远看不清身边人的模样。萝岗中考辅导。。
萝岗中考辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:即便身在生活,也要做理想的卧底。。中小学教育(一对一辅导)专注于学生学习能力的培养以及学生学科知识的辅导,中小学教育(一对一辅导)视教学质量为生命,受到许多学生和家长的认可。
中小学教育-专注个性化一对一辅导-免费试听入口
中小学教育秉承"以人为本、因材施教"的个性化教育理念,打造了包括个性化培训、全日制教育、职业教育、文化服务等在内的丰富业务模式. 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你只有读懂了生命之重,才能看淡时光之轻。
萝岗中考辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:我们有时从错误中学到的东西,可能比从美德中学到的还要多。。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:给烟不给火,纯属调戏我。萝岗中考辅导。。
几何图形面积计算方法
一、常见几何图形的面积计算基本公式
正方形:正方形的面积等于边长乘以边长,即
?
=
?
×
?
=
?
2
S=a×a=a
2
,其中
?
a为正方形的边长 。
长方形:面积等于长乘以宽,公式为
?
=
?
×
?
S=a×b,
?
a为长,
?
b为宽 。
平行四边形:其面积是底乘以高,
?
=
?
×
?
S=a×h,
?
a是底边长,
?
h是这条底边对应的高 。
三角形:面积为底乘以高除以
2
2,
?
=
1
2
×
?
×
?
S=
2
1
?
×a×h,
?
a为底,
?
h为这条底边上的高。此外,如果知道三角形三条边的长度
?
a、
?
b、
?
c,可以先计算半周长
?
=
?
+
?
+
?
2
s=
2
a+b+c
?
,再用海伦公式
?
=
?
(
?
?
?
)
(
?
?
?
)
(
?
?
?
)
S=
s(s?a)(s?b)(s?c)
?
计算面积 。
梯形:面积计算公式为
(
上底
+
下底
)
×
高
÷
2
(上底+下底)×高÷2,即
?
=
(
?
+
?
)
×
?
2
S=
2
(a+b)×h
?
,
?
a、
?
b分别为上底和下底的长度,
?
h为高 。
圆:面积是
?
π乘以半径的平方,
?
=
?
×
?
2
S=π×r
2
,
?
r为圆的半径 。
二、特殊几何图形(扇形、弓形等)的面积计算
扇形:
?
=
?
360
×
?
×
?
2
S=
360
n
?
×π×r
2
(
?
n是圆心角度数,
?
r是半径),也可由
?
=
1
2
?
?
S=
2
1
?
lr计算(
?
l为弧长) 。
弓形:弓形面积计算较为复杂,
?
=
?
2
2
×
(
?
180
×
?
?
sin
?
?
)
S=
2
r
2
?
×(
180
α
?
×π?sinα)(
?
r为半径,
?
α为圆心角弧度制下的角度)或者
?
=
1
2
?
2
arccos
?
[
?
?
?
?
]
?
(
?
?
?
)
2
?
?
?
?
2
S=
2
1
?
r
2
arccos[
r
r?h
?
]?(r?h)
2rh?h
2
?
(
?
h为弓形的高)等多种表达式 。
三、不规则几何图形面积计算方法
分割法:把不规则图形分割成多个规则的几何图形,分别计算这些规则图形的面积,然后将它们相加得到不规则图形的面积 。
填补法:用一个新的图形将不规则图形填补成一个规则图形,用这个规则图形的面积减去填补部分图形的面积,从而得到不规则图形的面积 。
平移和旋转法:通过平移和旋转图形,将其重新组合成一个规则图形,进而求出面积,这种方法需要一定的空间想象能力 。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:可不可以为了我,一个这么爱你的我,拒绝所有暧昧?萝岗中考辅导。。
萝岗中考辅导。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:与其在风雨中逃避,不如在雷电中舞蹈,即便淋得透湿,也是领略生命的快意。萝岗中考辅导。。欢迎预约就近校区免费测评体验课。预约免费试听课:400-6169-685.