咨询热线 400-6169-615
2025-05-09 18:25:17|已浏览:11次
萝岗初一文综一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:此刻不发奋工作,发奋寻求工作。。
萝岗初一文综一对一。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:真正的行者,不在于走过了多少地方,而在于成就了多少次全新的自己。。三年级数学概念教学法
一、明确教学目标
在三年级数学概念课教学中,明确教学目标非常重要。例如,目标可以设定为帮助学生掌握数字、图形和几何等数学概念,并能灵活运用这些概念解决实际问题。明确的教学目标有助于指导教学实施。这样具体、明确的目标能够让教师在教学过程中有更清晰的方向,也能让学生更清楚学习的重点所在。
二、运用多种教学方法
讲授与示范:在讲解数学概念时,讲授法是基础,能直接传达概念的定义等知识内容。如在讲解数字概念的时候,可以通过示意图和实际数列演示,让学生理解数字的顺序和规律;在讲解几何概念时,通过示范观察、绘画和模型等方式,让学生感受形状的特点和属性。例如在教授三角形概念时,教师可以在黑板上画出不同类型的三角形(锐角三角形、直角三角形、钝角三角形),展示其边和角的特点。
练习巩固:通过练习能加深学生对概念的理解。练习的设计要有针对性,从简单到复杂逐步递进。比如在学习乘法概念后,先让学生做一些简单的一位数乘以一位数的乘法练习,再逐渐过渡到两位数乘以一位数等。
讨论互动:组织学生进行讨论可以激发学生的思维。例如,教师提出一个数学概念相关的问题,如“在生活中哪些地方能看到长方形”,让学生们分组讨论并汇报结果。这不仅能加深对长方形概念的理解,还能培养学生的表达能力和团队协作能力。
三、培养数学思维
启发推理:数学概念课是培养学生数学思维的重要环节。在教学过程中,注重启发学生的思维和引导他们进行推理和归纳。例如,在讲解数的差的概念时,引导学生观察规律,从而找到计算两个数之差的方法。
逻辑思维培养:通过逐步引导学生分析概念之间的关系来培养逻辑思维。比如在教授图形分类概念时,引导学生根据图形的边数、角的类型等特征进行分类,让学生理解分类的依据和逻辑。
四、激发学习兴趣
趣味活动与游戏:设计趣味性的活动和游戏,让学生在游戏中学习和巩固数学概念。比如,在讲解图形的课程中,组织学生进行图形拼接和变形的游戏,让学生在游戏中体会到数学的乐趣,激发他们对数学的兴趣。
结合生活实例:以学生熟识的生活为素材,创设一种模拟生活的情景,使学生感到数学可亲可近。例如在教授重量单位概念时,让学生到超市了解日常用品的重量,然后掂一掂,这种方式能让学生更直观地感受数学概念在生活中的应用。
五、根据学生特点进行教学
关注个体差异(差异化教学):每个学生的学习差异都不同,要充分利用差异化教学的方法,满足个别学生的学习需求。例如,在授课前对学生进行调查,了解他们的学习差异,然后根据学生的需求进行个别辅导和指导。对于学习能力较强的学生,可以提供一些拓展性的学习任务,如探究复杂的几何图形组合问题;对于学习能力较弱的学生,则着重巩固基础概念的理解和简单应用。
考虑学生认知水平:小学三年级学生的思维,还处于具体形象思维向抽象逻辑思维过渡的阶段,但这种抽象逻辑思维在很大程度上仍要凭借事物的具体形象或表象。因此,在教学中,应当通过实物图像的直观性,联系儿童熟识的事例或已有的知识,来形象地引进新的概念。如在教授分数概念时,可以用分蛋糕、分苹果等例子,让学生先从直观的分割中理解分数的意义。
六、强化实际问题的应用
在教学中,引导学生将所学的数学概念运用到实际问题中,使数学概念有更大的应用价值。例如,在讲解时间概念时,让学生解决与时间相关的实际问题,如计算两个时间点之间的时间差等。通过解决实际问题,能加深学生对概念的理解,也能提高学生运用知识的能力。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:外貌决定有没有可能在一起,性格决定适不适合在一起,物质决定能不能稳定的在一起,信任决定能不能长久的在一起。萝岗初一文综一对一。。
萝岗初一文综一对一。四年级数学几何题解题技巧
一、基础知识的掌握
图形特征的熟悉
对于线段,要知道它有两个端点,是直线的一部分,可以测量长度。例如在计算长方形周长时,长方形的边就是线段,需要准确知道线段的长度概念才能正确计算周长,即
(长
+
宽)
×
2
(长+宽)×2,这里的长和宽就是线段的长度
2
2。
射线只有一个端点,另一端无限延伸,不可测量长度;直线没有端点,向两端无限延伸也不可测量长度。在一些关于角的形成(由一点引出的两条射线组成角)以及直线相交等问题中会涉及到这些概念
5
5。
长方形的特征是对边相等,四个角都是直角,两组对边分别平行;正方形四条边都相等,四个角都是直角,两组对边分别平行。这些特征在解决图形的面积、周长以及判断图形关系等问题时非常关键。比如求正方形面积(边长×边长)就依赖于其四条边相等的特征
2
2。
平行四边形对边相等、对角相等、两组对边分别平行;梯形只有一组对边平行,不平行的两边叫腰,平行的两边叫底,两底间的距离是高。了解这些特点才能正确计算它们的面积(平行四边形面积 = 底×高,梯形面积 =(上底 + 下底)×高÷2)等
2
2。
二、解题思维技巧
(一)直观画图法
在遇到一些关于图形位置关系、形状变化等问题时,通过画图可以将抽象的问题直观化。
例如题目要求画出一个平行四边形指定底边上的高,如果只是凭空想象可能会出错,但是通过准确画图就能清晰地看到高是从平行四边形一条边上的一点向对边引的一条垂线段
2
2。
再比如判断两条直线的位置关系,是平行还是相交(垂直是相交的特殊情况),画图能帮助我们更直观地进行判断。
(二)单位换算技巧
在涉及到面积单位(如公顷、平方千米、平方米等)和长度单位换算时要熟练掌握换算关系。
1平方千米 = 100公顷,1公顷 = 10000平方米。像已知一个长方形土地面积是5公顷,长是1000米,求宽是多少米这类问题,就需要先把公顷换算成平方米(5公顷 = 50000平方米),再根据长方形面积公式求出宽(
50000
÷
1000
=
50
50000÷1000=50米)
1
1。
(三)分析已知条件
正向推理
当题目给出的条件比较明确直接时,可以从已知条件出发逐步推出结论。例如已知一个三角形的底和高,求面积(三角形面积 = 底×高÷2),直接将底和高的值代入公式计算即可。
逆向推理
对于一些要求某个图形的边长或者角度,而直接计算比较困难的题目,可以从问题的结论反推需要的条件。例如已知平行四边形的面积和高,求底,就可以根据平行四边形面积公式
面积
=
底
×
高
面积=底×高,逆向推出
底
=
面积
÷
高
底=面积÷高。
综合分析
有些题目需要将已知条件和所求问题综合起来分析。比如在一个梯形中,已知面积、上底和高,求下底。需要根据梯形面积公式
?
=
(
?
+
?
)
?
÷
2
S=(a+b)h÷2(
?
S表示面积,
?
a表示上底,
?
b表示下底,
?
h表示高),通过对公式变形(
?
=
2
?
÷
?
?
?
b=2S÷h?a),利用已知条件求出下底。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:这个世界,对着你笑的人太多太多。真心对你包容你一切的,太少。。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:盖茨比比以前任何时候都深切地感受到了财富所能赐予青春的魅力和它所能持有的神秘,感受到了锦衣靓饰的清新怡人,意识到了像银子似的发着熠熠光彩的黛西,安然傲倨于劳苦人为生活所做的拼死斗争之上。《了不起的盖茨比》萝岗初一文综一对一。
数的整除特性探究方法
一、从定义出发探究
明确整除的定义
对于两个整数
?
a、
?
(
?
≠
0
)
d(d
=0),若存在一个整数
?
p,使得
?
=
?
?
a=pd成立,则称
?
d整除
?
a,或
?
a被
?
d整除,记作
?
∣
?
d∣a。这是探究数的整除特性的基础定义。通过这个定义,可以进一步推导出数的整除相关性质和判定方法等。例如,当判断一个数是否能被另一个数整除时,可以看是否能找到满足定义中的
?
p值。
探究整除的性质
性质1:若
?
∣
?
b∣a,则
?
∣
(
?
?
)
b∣(?a),且对任意的非零整数
?
m有
?
?
∣
?
?
bm∣am。例如,如果
3
∣
6
3∣6,那么
3
∣
(
?
6
)
3∣(?6),并且对于
?
=
2
m=2,
3
×
2
∣
6
×
2
3×2∣6×2即
6
∣
12
6∣12。
性质2:若
?
∣
?
a∣b,
?
∣
?
b∣a,则
∣
?
∣
=
∣
?
∣
∣a∣=∣b∣。比如
2
∣
?
2
2∣?2且
?
2
∣
2
?2∣2,那么
∣
2
∣
=
∣
?
2
∣
=
2
∣2∣=∣?2∣=2。
性质3:若
?
∣
?
b∣a,
?
∣
?
c∣b,则
?
∣
?
c∣a。假设
3
∣
6
3∣6,
1
∣
3
1∣3,那么
1
∣
6
1∣6。
性质4:若
?
∣
?
?
b∣ac,而
(
?
,
?
)
=
1
(a,b)=1(
(
?
,
?
)
=
1
(a,b)=1表示
?
a、
?
b互质),则
?
∣
?
b∣c。例如
2
∣
3
×
4
2∣3×4,因为
2
2与
3
3互质,所以
2
∣
4
2∣4。
性质5:若
?
∣
?
?
b∣ac,而
?
b为质数,则
?
∣
?
b∣a,或
?
∣
?
b∣c。比如
3
∣
6
×
5
3∣6×5,
3
3是质数,所以
3
∣
6
3∣6或者
3
∣
5
3∣5。
性质6:若
?
∣
?
c∣a,
?
∣
?
c∣b,则
?
∣
(
?
?
+
?
?
)
c∣(ma+nb),其中
?
m、
?
n为任意整数(这一性质还可以推广到更多项的和)。例如
2
∣
4
2∣4,
2
∣
6
2∣6,那么对于
?
=
1
m=1,
?
=
1
n=1,
2
∣
(
1
×
4
+
1
×
6
)
=
2
∣
10
2∣(1×4+1×6)=2∣10。
二、按数字规律探究
2、5的整除特性
一个整数的末尾一位数能被
2
2或
5
5整除,则这个数就能被
2
2或
5
5整除。例如
12
12的末位数字
2
2能被
2
2整除,所以
12
12能被
2
2整除;
15
15的末位数字
5
5能被
5
5整除,所以
15
15能被
5
5整除。
4、25的整除特性
一个整数的末尾两位数能被
4
4或
25
25整除,则这个数就能被
4
4或
25
25整除。比如
124
124,末两位
24
=
4
×
6
24=4×6,能被
4
4整除,所以
124
124能被
4
4整除;
175
175,末两位
75
=
25
×
3
75=25×3,能被
25
25整除,所以
175
175能被
25
25整除。
8、125的整除特性
一个整数的末尾三位数能被
8
8或
125
125整除,则这个数就能被
8
8或
125
125整除。例如
1128
1128,末三位
128
=
8
×
16
128=8×16,能被
8
8整除,所以
1128
1128能被
8
8整除;
1125
1125,末三位
125
=
125
×
1
125=125×1,能被
125
125整除,所以
1125
1125能被
125
125整除。
3、9的整除特性
能被
9
9和
3
3整除的数的特征,如果各位上的数字和能被
9
9或
3
3整除,则这个数能被
9
9或
3
3整除。比如
123
123各位数字之和
1
+
2
+
3
=
6
1+2+3=6,
6
6能被
3
3整除,所以
123
123能被
3
3整除;
189
189各位数字之和
1
+
8
+
9
=
18
1+8+9=18,
18
18能被
9
9整除,所以
189
189能被
9
9整除。
7、11、13的整除特性
一个数的末三位数与末三位以前的数字所组成的数之差能被
7
7,
11
11或
13
13整除,则这个数字就能被
7
7、
11
11、
13
13整除。例如
123123
123123,末三位
123
123,末三位以前的数字组成的数是
123
123,它们的差
123
?
123
=
0
123?123=0,
0
0能被
7
7、
11
11、
13
13整除,所以
123123
123123能被
7
7、
11
11、
13
13整除。
11的整除特性(另一种)
一个整数的奇数位上的数字和与偶数位上的数字之和的差〔大减小〕能被
11
11整除。例如
1331
1331,奇数位数字和
1
+
3
=
4
1+3=4,偶数位数字和
3
+
1
=
4
3+1=4,它们的差
4
?
4
=
0
4?4=0,能被
11
11整除,所以
1331
1331能被
11
11整除。
三、通过实例探究
在数学运算中的探究
在解决数学运算问题时,可以根据数的整除特性来简化计算或者判断答案的合理性。例如在数量关系题目中,如果已知条件涉及到一些特殊数字,就可以利用这些数字的整除特性快速解题。如在计算参赛总人数时,如果东区参赛人数占总人数的
1
5
5
1
?
,东区参赛人数的
1
3
3
1
?
获奖,那么总人数要能够被
3
3、
5
5整除。根据数的整除判定,在给定的范围(超过
100
100人,不到
200
200人)内找出符合条件的数。通过这种实例,可以探究数的整除特性在实际运算中的应用方式和价值。
在数字组合中的探究
对于一些需要组成满足整除条件的数字的问题,也可以探究数的整除特性。比如从
0
0,
4
4,
9
9,
5
5这四个数中任选三个排列成能同时被
2
2,
5
5整除的三位数,就需要根据能被
2
2和
5
5整除的数的末尾数字特征(末尾数字是
0
0)来进行组合数字的探究,从而找出符合要求的数字组合,进一步深入理解数的整除特性在数字组合方面的体现。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:与好人交往就会有好的朋友,与聪明人交往就会有聪明的朋友,与混混交往就会有混混的朋友,这个道理很简单。萝岗初一文综一对一。.
萝岗初一文综一对一。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:爱之于我,不是肌肤之亲,不是一蔬一饭,它是一种不死的欲望,是颓败生活中的英雄梦想。。除法游戏设计的创意方法
一、基于数学规律的创意方法
利用整除规律
可以根据数的整除特性来设计游戏。例如,像“经典趣味数学游戏之除法的秘诀”中提到的,如果一个数的各位上的数字之和是3(或9)的倍数,那么这个数就能被3(或9)整除;若一个数的末尾两位数是4(或25)的倍数,那么这个数就能被4(或25)整除;若一个数的末尾三位数是8的倍数,那么这个数就能被8整除等。根据这些规律设计游戏,如让玩家判断一些数能否被特定数整除的抢答游戏,答对得分,答错扣分,这能帮助玩家加深对除法中整除概念的理解和对整除规律的记忆。
余数相关的创意
以余数为核心来设计游戏。例如设计一个猜数字的游戏,给出一个除法算式中的被除数、除数范围和余数,让玩家去猜商是多少。或者像“课堂趣味数学游戏:活用余数,巧设成功——有余数的除法”那样,利用余数与规律之间的联系设计游戏,如按一定规律排列数字,通过报数字的序号让玩家利用余数的原理猜出数字,这有助于玩家理解余数在除法中的意义和作用,提高他们对有余数除法的计算能力和运用能力。
二、结合实际生活场景的创意方法
购物场景
模拟购物场景设计除法游戏。例如,设定一个商店,里面有各种商品标明价格(价格数字设计为方便做除法计算的),给玩家一定金额的虚拟货币,要求玩家计算可以购买某种商品的数量,这能让玩家在熟悉的生活场景中感受到除法在分配资源方面的作用,增强对除法运算的实际运用能力。
分组场景
假设班级活动分组的场景,给出总人数和每组的人数限制,让玩家计算可以分成多少组,以及是否有剩余人数。这种场景化的游戏设计能使玩家将除法与实际的分组问题联系起来,更好地理解除法的概念。
三、借助道具的创意方法
卡片类道具
使用数字卡片来设计游戏。例如,从扑克牌中抽取部分数字卡片,或者专门制作数字卡片。玩家随机抽取两张卡片组成被除数和除数,然后计算商和余数。还可以设计多人竞赛的形式,看谁计算得又快又准,增加游戏的趣味性和竞技性。
实物道具
利用小物件如棋子、糖果等作为道具。例如,将一定数量的棋子摆放在桌上,规定每次拿走的数量,计算经过多少次拿取后可以拿完,或者最后剩余多少棋子,这使玩家能够直观地看到除法运算在分配实物中的体现,增强对除法运算过程的理解。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:每一棵大树的成长都要接受阳光,也包容风雨。萝岗初一文综一对一。。