咨询热线 400-6169-615
2025-05-12 09:22:01|已浏览:31次
花都中考物理培训机构。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:哪有什么天生一对最般配,只是一个懂得包容迁就,另一个懂得适可而止。。
花都中考物理培训机构。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:用粗茶淡饭养胃,用清新空气洗肺,让灿烂阳光晒背,有空时朋友聚聚会,忘却辗转尘世的累。。节日的气氛还没有结束,近期近有很多家长咨询兰州青成教育校区地址相关情况,为了助力家长们及时了解校区相关情况,今日小编就为同学们说说其校区地址,一起来看看吧!
在兰州地区,青成教育是比较有名的一家教学机构,这里专为初高中学员提供教学辅导以及教学课程,更加注重学员个性化学习,注重学习方式,其从事教学已经有多年的历史,教学实力方面是值得同学及家长们选择的,总体来说是很不错的。
兰州青成教育校区地址
并且这里还同学们提供不同种类的教学课程,有艺考文化课、高中全科辅导、初中全科辅导机构课程,同学们可以根据自己实际情况进行选择,总体来说是很不错的,其目前个性化辅导课程价格是500元4课时,同学们可以先进行体验学习,合适在进行选择。
并且,其在兰州是有多家校区分布的,主要校区如下:
1.兰州铁路局家教辅导中心
校区地址:兰州市城关区民主东路218号2楼(邮电大楼公交车站对面),乘车路线:112路;11路;130路;144路;17路;31路;56路;6路;7路;9路;k102路。
兰州青成教育
2雁滩大润发家教辅导中心
雁滩大润发家教辅导中心地址:兰州市城关区雁滩路3113号欣大百货,交通路线:116、109、82、22、35、146等公交路线,到大润发站下车即到。
3.兰州青成阳光家园家教辅导中心
阳光家园家教辅导中心地址:兰州市七里河区阳光家园商埠小步行街2楼(七里河消防队对面)。阳光家园家教辅导中心交通路线:乘坐118、111、59、35、109、105路到兰石家属院下车。
青成教育
4.兰州全日制校区
上课地址:兰州市兰州新区石羊河街附近
5.兰州广场西口家教辅导中心
校区地址:兰州市城关区甘南路606-2号兰州银行(兰州一中公交车站对面)。交通路线:乘坐71、118、111、82、120、18、149路到。
关于校区地址,小编就将自己所知道的介绍给大家,如果想要了解更加详细的校区地址,同学们可以在线进行咨询,会有校区老师们进行详细解答,助力同学们学习。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:有一天,你会感谢他的离去,是他的离去给你腾出了幸福的空间。花都中考物理培训机构。。
花都中考物理培训机构。正方体体积计算的实际应用
一、正方体体积计算在建筑工程中的应用
材料用量计算
在建筑工程中,当使用正方体形状的建筑材料(如正方体的砖块、石块等)时,需要计算其体积来确定材料的用量。例如,一个正方体砖块的棱长为
0.2
0.2米,根据正方体体积公式
?
=
?
3
V=a
3
(其中
?
a为正方体的棱长),则该砖块的体积为
?
=
(
0.2
)
3
=
0.008
V=(0.2)
3
=0.008立方米。如果要建造一堵墙需要
1000
1000块这样的砖块,那么所需要的材料总体积就是
1000
×
0.008
=
8
1000×0.008=8立方米。
空间规划
在设计正方体形状的建筑结构(如正方体的房间、储物间等)时,计算正方体体积可以帮助确定空间的大小。例如,设计一个正方体的储物间,其棱长为
3
3米,那么它的体积就是
3
3
=
27
3
3
=27立方米,这可以让设计师清楚这个储物间能够容纳多少物品。
二、正方体体积计算在制造业中的应用
产品设计
在制造正方体形状的产品(如正方体的包装盒、零件等)时,需要计算体积以确定原材料的使用量和产品的容纳空间。例如,一个正方体包装盒的棱长为
5
5厘米,其体积为
5
3
=
125
5
3
=125立方厘米。这可以帮助确定能装入包装盒内物品的最大体积,也有助于计算制作包装盒所需的材料面积等相关参数。
质量控制
对于正方体形状的金属制品等,如果已知材料的密度,通过计算正方体的体积,再结合密度就可以确定产品的质量,从而进行质量控制。例如,一种正方体的金属零件,棱长为
2
2厘米,该金属的密度为
8
8克/立方厘米。先计算体积
?
=
2
3
=
8
V=2
3
=8立方厘米,然后根据质量 = 密度×体积,可得该零件的质量为
8
×
8
=
64
8×8=64克。
三、正方体体积计算在物流运输中的应用
货物装载量计算
当运输正方体形状的货物时,计算正方体体积有助于确定运输工具(如卡车、集装箱等)的装载量。例如,正方体货物的棱长为
1
1米,其体积为
1
3
=
1
1
3
=1立方米。如果一辆卡车的货箱容积为
20
20立方米,就可以大致计算出这辆卡车最多能装载这种正方体货物的数量为
20
÷
1
=
20
20÷1=20个(不考虑货物之间的间隙等实际因素)。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:烦恼不过夜,健忘才幸福。。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:地球是运动的,一个人不会永远处在倒霉的位置。花都中考物理培训机构。高三政治一对一知识点强化辅导课程
【课程简介】
1、政治课程讲解帮助学生掌握哪些是要学习的、哪些是要背诵的、哪些是经常会考的;
2. 课前1对1诊断,匹配专属老师制定精准方案;
4、完善的内容数据,从孩子们的整理实力和接收方法深入;
3、政治学习中怎么抓住难点,怎么寻到答题者目的,让孩子们清楚应试中政治考试的方法,帮助学生考出更好的分数。
【课程亮点】
1、课程全面辅导,深入浅出化教学;
2、多年教学经历师资教学,导师深入辅导,因材施教; 熟悉应试数学发展方向及应试趋势。
3、老师干货分享,技巧教授,深入掌握课程内容;
4、1v1个性辅导,1v4互动辅导,小班制辅导更细致;
5、导师亲授指点,巩固学科内容,达到理想学习效果。
【课程大纲】
基础
1.激发学习动机
2.培养学习兴趣
3.课本知识梳理
4.基础题型讲解
进阶
1.掌握市场经济体系、文化生活知识点及应用
2.政治生活解题总结
3.哲学原理透析
4.培养政治学科素养
规范
1.查漏补缺,建立错误档案
2.针对训练,锻炼解题能力
3.构建扎实的知识网络
点拨
1.时政热点专项训练
2.培养政治学科素养
3.政治生活解题总结
巩固
1.经典试题训练
2.时政热点应用延伸
3.一题多解拓展,变式训练。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你不努力,永远不会有人对你公平。只有你努力了,有了资源,有了话语权以后,你才可能为自己争取公平的机会。花都中考物理培训机构。.
花都中考物理培训机构。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:对未来的真正慷慨,是把一切献给现在。。五年级上册数学重点难点解析
一、小数乘法
重点
计算法则:先把小数扩大成整数,按整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。例如:
1.5
×
0.8
1.5×0.8,先计算
15
×
8
=
120
15×8=120,因数共有两位小数,所以结果是
1.20
1.20,小数部分末尾的
0
0要去掉,最终结果为
1.2
1.2。同时,计算结果中小数部分位数不够时,要用
0
0占位,如
0.25
×
0.4
=
0.100
=
0.1
0.25×0.4=0.100=0.1。
积与因数的大小关系:一个数(
0
0除外)乘大于
1
1的数,积比原来的数大;一个数(
0
0除外)乘小于
1
1的数,积比原来的数小。如
1.01
×
0.99
>
0.99
1.01×0.99>0.99,
2.6
×
0.99
<
2.6
2.6×0.99<2.6。
倍数应用题:求多的用“×”,求少的用“÷”,求多少倍用“÷”。
难点
确定积的小数点位置:特别是因数中小数位数较多或者积的末尾有
0
0的情况,容易出错。例如
0.25
×
0.04
=
0.01
0.25×0.04=0.01,要准确数出因数中的小数位数来确定积的小数点位置。
理解积的变化规律:需要学生掌握因数变化时积的相应变化,在解决一些实际问题时能够灵活运用。
二、小数除法
重点
计算法则:
小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商
0
0,点上小数点。如果有余数,要添
0
0再除。例如
1.75
÷
5
1.75÷5,按照整数除法计算
17
÷
5
=
3
?
?
2
17÷5=3??2,然后
25
÷
5
=
5
25÷5=5,结果是
0.35
0.35。
除数是小数的除法,先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。如
7.65
÷
0.85
7.65÷0.85,将除数和被除数同时扩大
100
100倍变为
765
÷
85
=
9
765÷85=9。
商不变性质:被除数和除数同时扩大或缩小相同的倍数(
0
0除外),商不变。
商与被除数、除数的关系:除数不变,被除数扩大(缩小),商随着扩大(缩小);被除数不变,除数缩小,商反而扩大;被除数不变,除数扩大,商反而缩小。
难点
除数是小数的除法计算:在将除数转化为整数的过程中,容易忘记同时移动被除数的小数点,导致计算错误。
商的近似数:根据要求保留一定的小数位数时,要正确使用“四舍五入”法,并且在计算钱数时,保留两位小数表示计算到分,保留一位小数表示计算到角等实际应用场景的理解。
三、位置
重点
数对的概念:确定物体的位置要用到数对(先列:即竖,后行即横排)。例如在一个坐标图中,点
(
3
,
4
)
(3,4)表示第
3
3列第
4
4行。
用数对解决问题:一是给出一对数对,要能在坐标图中标出物体所在位置的点;二是给出坐标中的一个点,要能用数对表示。
难点:理解数对的意义以及数对与坐标图中位置的对应关系,尤其是在一些复杂的图形或者场景中准确确定位置。
四、可能性
重点
可能性的大小计算:把几种可能的情况的份数相加做分母,单一的这种可能性做分子,就可求出相应事件发生可能性大小。
判断事件发生的可能性:区分确定事件(必然事件和不可能事件)和不确定事件(可能发生的事件)。
难点:对于一些复杂的情境,准确分析各种可能性情况并计算其大小。
五、简易方程
重点
方程的概念:方程必须满足两个条件,必须是等式且必须有未知数(两者缺一不可)。例如
2
?
+
3
=
7
2x+3=7是方程。
解方程的方法:利用等式的性质,如等式两边同时加、减、乘、除同一个数(
0
0除外),等式仍然成立,来求出方程的解。
用方程解决实际问题:找出题目中的等量关系,设未知数,列方程求解。
难点
列方程解应用题:找出合适的等量关系对于学生来说可能比较困难,需要对题目中的数量关系有深入的理解。
理解等式的性质并正确解方程:特别是在涉及到含有括号或者需要移项的方程时,容易出现计算错误。
五年级下册数学重点难点解析
一、因数和倍数
重点
概念理解:理解因数、倍数、质数、合数、奇数、偶数等概念。例如,
6
÷
2
=
3
6÷2=3,那么
2
2和
3
3是
6
6的因数,
6
6是
2
2和
3
3的倍数;一个数,如果只有
1
1和它本身两个因数,这样的数叫做质数(或素数),如
2
2、
3
3、
5
5等;一个数,如果除了
1
1和它本身还有别的因数,这样的数叫做合数,如
4
4、
6
6、
8
8等。
2、3、5的倍数特征:个位上是
0
0、
2
2、
4
4、
6
6、
8
8的数是
2
2的倍数;个位上是
0
0或
5
5的数是
5
5的倍数;一个数各位上的数字之和是
3
3的倍数,这个数就是
3
3的倍数。
难点
概念辨析:因数和倍数是相互依存的关系,学生容易孤立地看待这些概念;区分质数、合数、奇数、偶数的概念,尤其是一些特殊数字(如
1
1既不是质数也不是合数)。
应用倍数特征解决问题:在一些综合问题中,准确运用倍数特征进行分析和计算。
二、多边形的面积
重点
面积公式:
三角形的面积 = 底×高÷
2
2(
?
△
=
?
×
?
÷
2
S△=a×h÷2)。
梯形的面积 =(上底 + 下底)×高÷
2
2。
组合图形面积计算:将组合图形转化为已学过的简单图形(如三角形、梯形、长方形等)的面积之和或差来计算。
难点
三角形和梯形面积公式的推导及应用:理解公式的推导过程有助于更好地掌握和运用公式,但是推导过程涉及到图形的割补、拼接等操作,对于学生来说有一定难度。
组合图形的分解与计算:正确分析组合图形的组成部分,选择合适的计算方法是难点所在。
三、分数的意义和性质
重点
分数的概念:理解分数的意义,包括单位“
1
1”的含义,例如把一个整体平均分成若干份,表示这样一份或几份的数叫做分数。
分数的基本性质:分数的分子和分母同时乘或者除以相同的数(
0
0除外),分数的大小不变。这是约分和通分的依据。
分数与除法的关系:
?
÷
?
=
?
?
a÷b=
b
a
?
(
?
≠
0
b
=0),可以帮助理解分数的意义和运算。
难点
分数意义的理解:特别是在涉及到不同情境下单位“
1
1”的确定时,学生可能会感到困惑。
约分和通分的实际操作:准确找出分子分母的最大公因数和最小公倍数进行约分和通分。
四、分数的加法和减法
重点
同分母分数加减法:分母不变,分子相加减。例如
3
5
+
1
5
=
4
5
5
3
?
+
5
1
?
=
5
4
?
。
异分母分数加减法:先通分,化为同分母分数,再按照同分母分数加减法的法则进行计算。如
1
2
+
1
3
=
3
6
+
2
6
=
5
6
2
1
?
+
3
1
?
=
6
3
?
+
6
2
?
=
6
5
?
。
难点
通分的计算:正确找到两个分母的最小公倍数进行通分,在计算过程中容易出现错误。
解决分数加减法的实际问题:分析题目中的数量关系,将实际问题转化为分数加减法的运算。
五、图形的运动(三)
重点
旋转的性质:理解图形旋转的三要素(旋转中心、旋转方向、旋转角度),以及旋转前后图形的形状、大小不变,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角等性质。
旋转图形的绘制:根据给定的条件准确绘制旋转后的图形。
难点
确定旋转的要素:在一些复杂图形中准确确定旋转中心、旋转方向和旋转角度。
绘制复杂图形的旋转图形:特别是对于不规则图形的旋转绘制,需要较强的空间想象能力。
六、折线统计图
重点
折线统计图的特点:不仅可以反映数量的多少,还能反映出数量的增减变化情况。
绘制折线统计图:根据数据正确绘制折线统计图,包括确定横纵轴的单位、标点、连线等步骤。
难点
对折线统计图的分析:从折线统计图中获取信息,分析数据的变化趋势,并进行合理的预测。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:即使每一种青春最后都要苍老,即使每一个精彩的开头最后都有一个庸俗的结局,但是我们依然要在自己有力气的时候,去看一看远大的世界,无垠的生命。花都中考物理培训机构。。