欢迎来到三人行教育网,代理招生网站!

全国切换城市

咨询热线 400-6169-615

位置:三人行教育网,代理招生网站 > 新闻资讯 > 教育新闻 > 教育要闻 >  黄埔高考语文培训班。

黄埔高考语文培训班。

来源:三人行教育网,代理招生网站

2025-06-27 14:14:57|已浏览:3次

黄埔高考语文培训班。

黄埔高考语文培训班。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:不是烦恼太多,而是心胸不够开阔。黄埔高考语文培训班。。中小学教育—个性化一对一辅导教育品牌!


教育品牌 特色服务 教育经验 覆盖城市 骨干教师 受益学生 中小学教育全日制课程 特色课程Special course 个性化学习 / 个性化小组课 全国免费咨询热线400-6169-615.

广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:青春是最优美的歌曲,只要你全身心地去吟唱。。
黄埔高考语文培训班。


黄埔高考语文培训班。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:扎根,是一种看不见的力量,它默默地生长,让人生慢慢变强。。五年级数学方程应用题实例


一、和倍问题实例
例1:某商场暑假期间卖出的冰箱和空调共572台,卖出的空调数量是冰箱的1.2倍,卖出冰箱和空调各多少台(用方程解答)
设卖出冰箱
?
x台,因为卖出的空调数量是冰箱的1.2倍,所以卖出空调
1.2
?
1.2x台。
根据冰箱和空调共卖出572台,可列出方程
?
+
1.2
?
=
572
x+1.2x=572。
合并同类项得
2.2
?
=
572
2.2x=572,解得
?
=
572
2.2
=
260
x= 
2.2
572
?
 =260。
则卖出空调的数量为
1.2
×
260
=
312
1.2×260=312台。
例2:四、五、六年级共植树110棵,六年级植的棵树是四年级的3倍少1棵,五年级植的棵树是四年级的2倍多3棵。四、五、六年级各植树多少棵
设四年级植树
?
x棵,那么六年级植树
(
3
?
?
1
)
(3x?1)棵,五年级植树
(
2
?
+
3
)
(2x+3)棵。
根据三个年级共植树110棵,可列方程
?
+
(
3
?
?
1
)
+
(
2
?
+
3
)
=
110
x+(3x?1)+(2x+3)=110。
去括号得
?
+
3
?
?
1
+
2
?
+
3
=
110
x+3x?1+2x+3=110,合并同类项得
6
?
+
2
=
110
6x+2=110。
移项得
6
?
=
110
?
2
=
108
6x=110?2=108,解得
?
=
18
x=18。
所以四年级植树18棵,五年级植树
2
×
18
+
3
=
39
2×18+3=39棵,六年级植树
3
×
18
?
1
=
53
3×18?1=53棵。
二、差倍问题实例
例:果园里共种240棵果树,其中桃树是梨树的2倍,这两种树各有多少棵
设梨树有
?
x棵,因为桃树是梨树的2倍,则桃树有
2
?
2x棵。
根据两种树共240棵,可列方程
2
?
+
?
=
240
2x+x=240。
合并同类项得
3
?
=
240
3x=240,解得
?
=
80
x=80。
那么桃树有
2
×
80
=
160
2×80=160棵。
三、鸡兔同笼问题实例
例:鸡兔被关在同一个笼子里,共60只,鸡的脚数比兔的脚数多30只,则鸡兔各有多少只
设鸡有
?
x只,则兔有
(
60
?
?
)
(60?x)只。
因为每只鸡有2只脚,每只兔有4只脚,根据鸡的脚数比兔的脚数多30只,可列方程
2
?
?
4
(
60
?
?
)
=
30
2x?4(60?x)=30。
去括号得
2
?
?
240
+
4
?
=
30
2x?240+4x=30。
合并同类项得
6
?
?
240
=
30
6x?240=30,移项得
6
?
=
30
+
240
=
270
6x=30+240=270,解得
?
=
45
x=45。
则兔有
60
?
45
=
15
60?45=15只。
四、调配问题实例
例:有两根绳子,第一根长56厘米,第二根长36厘米,同时点燃后,平均每分钟都燃烧掉2厘米,几分钟后,第一根绳子的长度是第二根的3倍

?
x分钟后第一根绳子的长度是第二根的3倍。
?
x分钟后,第一根绳子的长度为
(
56
?
2
?
)
(56?2x)厘米,第二根绳子的长度为
(
36
?
2
?
)
(36?2x)厘米。
根据此时第一根绳子长度是第二根的3倍,可列方程
56
?
2
?
=
3
(
36
?
2
?
)
56?2x=3(36?2x)。
去括号得
56
?
2
?
=
108
?
6
?
56?2x=108?6x。
移项得
6
?
?
2
?
=
108
?
56
6x?2x=108?56,合并同类项得
4
?
=
52
4x=52,解得
?
=
13
x=13。
五、盈亏问题实例
例:学校安排学生到会议室听报告,如果每3人坐一条长椅,则剩下48人没有座位;如果每5人坐一条长椅,则刚好空出2条长椅。参加会议的学生有多少人
设有
?
x条长椅。
根据学生人数不变,可列方程
3
?
+
48
=
(
?
?
2
)
×
5
3x+48=(x?2)×5。
去括号得
3
?
+
48
=
5
?
?
10
3x+48=5x?10。
移项得
5
?
?
3
?
=
48
+
10
5x?3x=48+10,合并同类项得
2
?
=
58
2x=58,解得
?
=
29
x=29。
则学生人数为
3
×
29
+
48
=
135
3×29+48=135人。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:愿有人给你波澜不惊的爱情,陪你看细水常流的风景。黄埔高考语文培训班。。



黄埔高考语文培训班。


黄埔高考语文培训班。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:所有的忧伤都是过往,当时间慢慢沉淀,你会发现,自己的快乐比想 象的多得多。。中小学教育(一对一辅导)专注于学生学习能力的培养以及学生学科知识的辅导,中小学教育(一对一辅导)视教学质量为生命,受到许多学生和家长的认可。

中小学教育-专注个性化一对一辅导-免费试听入口

中小学教育秉承"以人为本、因材施教"的个性化教育理念,打造了包括个性化培训、全日制教育、职业教育、文化服务等在内的丰富业务模式. 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:地球是圆的,有些看上去是终点的地方,也许只是起点。

黄埔高考语文培训班。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:你转身的一瞬,我萧条的一生。。



黄埔高考语文培训班。


广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:成长,最残酷的部分就是,女孩永远比同年龄的男孩成熟,女孩的成熟,没有一个男孩招架得住。黄埔高考语文培训班。。四年级数学应用题解题技巧


一、针对不同题型的解题技巧
(一)归一问题
技巧:先求出单一量,再根据单一量求出所要求的数量。例如,已知3小时生产60个零件,先求出1小时生产的零件数(60÷3 = 20个),这就是单一量。如果要求8小时生产的零件数,就用单一量乘以8(20×8 = 160个)。
(二)归总问题
技巧:先求出总量,再根据总量和其他条件求出所求的量。比如,每人每天吃2个馒头,5人3天吃的馒头总量是2×5×3 = 30个。如果已知馒头总量是30个,10人吃这些馒头能吃的天数就是30÷(10×2)=1.5天。
(三)和差问题
技巧:大数=(和 + 差)÷2,小数=(和 - 差)÷2。例如,已知两数之和是12,两数之差是4,那么大数=(12 + 4)÷2 = 8,小数=(12 - 4)÷2 = 4。
(四)和倍问题
技巧:小数 = 和÷(倍数 + 1),大数 = 小数×倍数。例如,甲、乙两数的和是30,甲数是乙数的2倍,乙数 = 30÷(2 + 1)=10,甲数 = 10×2 = 20。
(五)差倍问题
技巧:小数 = 差÷(倍数 - 1),大数 = 小数×倍数。例如,甲数比乙数多15,甲数是乙数的4倍,乙数 = 15÷(4 - 1)=5,甲数 = 5×4 = 20。
(六)倍比问题
技巧:先求出倍数关系,再根据已知量求出未知量。如已知A是B的3倍,B是10,求A,A = 10×3 = 30。
(七)相遇问题
技巧:相遇路程 = 速度和×相遇时间。例如,甲、乙两人的速度分别是5米/秒和3米/秒,经过10秒相遇,那么相遇路程=(5 + 3)×10 = 80米。
(八)追及问题
技巧:追及路程 = 速度差×追及时间。比如,甲的速度是7米/秒,乙的速度是5米/秒,追及时间为8秒,追及路程=(7 - 5)×8 = 16米。
(九)植树问题
两端都植树:棵数 = 段数 + 1 = 路长÷间距+1。例如,路长20米,间距4米,棵数 = 20÷4+1 = 6棵。
只植一端:棵数 = 段数 = 路长÷间距。
两端都不植:棵数 = 段数 - 1 = 路长÷间距 - 1。
(十)年龄问题
技巧:两人的年龄差始终不变。例如,今年甲10岁,乙12岁,年龄差是2岁,若干年后,年龄差还是2岁。
(十一)行船问题
顺流速度 = 船速 + 水速:例如船速是10米/秒,水速是2米/秒,顺流速度 = 10 + 2 = 12米/秒。
逆流速度 = 船速 - 水速。
二、通用解题技巧
(一)画图辅助
对于很多应用题,画出示意图可以帮助我们更直观地理解数量关系。比如在行程问题中画出线段图来表示路程、速度和时间的关系;在植树问题中画出树和间隔的关系图等。
(二)建立等量关系
认真分析题目中的条件,找出各个量之间的等量关系,然后根据等量关系列出方程或者算式。例如在和倍问题中,根据“和”与“倍数”的关系建立等式来求解。
(三)检查答案
将求得的答案代入原题目中进行检验,看是否符合题目中的所有条件。如果是计算路程的应用题,把答案代入速度和时间的关系中看是否正确。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:用粗茶淡饭养胃,用清新空气洗肺,让灿烂阳光晒背,有空时朋友聚聚会,忘却辗转尘世的累。黄埔高考语文培训班。。


黄埔高考语文培训班。  广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:爱,不是改变对方,而是一起成长。黄埔高考语文培训班。。欢迎预约就近校区免费测评体验课。预约免费试听课:400-6169-685.

  • 相关阅读