咨询热线 400-6169-615
2025-05-25 12:41:36|已浏览:16次
南沙一年级数学培训班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:做学问要在不疑处有疑,做人要在有疑处不疑。。
南沙一年级数学培训班。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:不降志,不屈身,不追赶时髦,也不回避危险。。你还在为孩子的高中学习烦恼吗?别担心,我们提供的一对一辅导,让每个孩子都能享受到量身定制的学习体验!
首先,我们会进行前期咨询,面对面了解你的孩子,挖掘他们的个性特点。这不仅仅是聊聊天,这是我们理解孩子的第一步。
接下来,我们的科学评估环节,将对学生的学习情况做一个全面的检视。这样我们才能准确把脉,找出学习上的症结所在。
评估后,我们会根据结果定制一个完美的个性化学习计划。无论是高二政治、历史、地理,还是高三语文、数学、英语,我们都会有专门的攻略。
学习过程中,我们提供面对面授课,我们的老师将因材施教,帮助孩子在每个专项上都能得到有效的巩固和提高。
而且,我们的个性化服务不是说说而已。学管师、学科教师等六位专职教师将全程陪伴,用心帮助孩子取得进步。
最后,我们会定期总结学生的学习情况,真诚地向家长报告并反馈。随时根据反馈调整学习目标,确保孩子能走在成功的道路上。
不论是高二还是高三,不论是政治、历史、地理还是语文、数学、英语,我们的一对一辅导都能帮助孩子在高考前夕取得质的飞跃。别等了,现在就来加入我们,让我们一起见证孩子的成长和成功! 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:何必向不值得的人证明什么,生活得更好,乃是为你自己。南沙一年级数学培训班。。
南沙一年级数学培训班。三年级除法应用题实例
一、平均分配类
实例1:物品分配
两个女孩一共买了64支笔,求平均每女孩买多少支笔。这是将总数64支笔平均分配给2个女孩,用除法计算,列式为
64
÷
2
=
32
64÷2=32支笔。
实例2:分组问题
三年级1班有学生36人,2班学生30人,两个班合起来做游戏,每6人一组,能分成几组。首先需要计算出两个班的总人数为
36
+
30
=
66
36+30=66人,然后将总人数除以每组的人数,得到组数,列式为
66
÷
6
=
11
66÷6=11组。
二、包含除类
实例1:按数量分配物品
有26个苹果,如果每个盘子里放4个苹果,一共需要几个盘子。这里是求26里面包含几个4,用除法计算,
26
÷
4
=
6
26÷4=6(个)
?
?
2
??2(个),说明装满6个盘子后还剩2个苹果,所以一共需要
6
+
1
=
7
6+1=7个盘子。
实例2:计算可购买的数量
小明带90元去超市买玩具熊,每个玩具熊15元,小明能买几个玩具熊还剩几元。这是求90元里包含几个15元,列式为
90
÷
15
=
6
90÷15=6个,没有余数,表示能买6个玩具熊且没有剩余的钱。
三、倍数关系类
实例1:年龄倍数关系
王雪今年6岁,爷爷今年72岁,2年后爷爷的年龄是王雪的几倍。2年后王雪的年龄是
6
+
2
=
8
6+2=8岁,爷爷的年龄是
72
+
2
=
74
72+2=74岁,求爷爷年龄是王雪年龄的几倍,列式为
74
÷
8
=
9.25
74÷8=9.25倍。
实例2:工作效率比较
王师傅做了56个玩具,李师傅7天做了49个玩具,比较谁做的快一点。先计算李师傅每天做的玩具数为
49
÷
7
=
7
49÷7=7个,王师傅做了56个玩具,但不知道做的天数,如果假设王师傅也做了7天,那么王师傅每天做
56
÷
7
=
8
56÷7=8个,
8
>
7
8>7,所以王师傅做的快一点。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:很多时候,我们说放下了,其实没有真的放下。我们只是在假装幸福,然后躲在寂静的角落里孤独地抚摸伤痕。。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:不管朋友还是恋人,当我说“算了”的时候,其实是包含了我太多的失望。南沙一年级数学培训班。四年级数学简便计算方法
一、凑整法
加法凑整
把相加能凑成整十、整百、整千的数先相加。例如:
28
+
54
+
46
=
28
+
(
54
+
46
)
=
28
+
100
=
128
28+54+46=28+(54+46)=28+100=128,这里将
54
54和
46
46先相加凑成
100
100,再与
28
28相加,计算就变得简便了。
减法凑整
从一个数里连续减去两个数,可以减去这两个数的和。例如:
156
?
37
?
63
=
156
?
(
37
+
63
)
=
156
?
100
=
56
156?37?63=156?(37+63)=156?100=56。
二、改变运算顺序
带符号搬家
在只有同级运算(加法和减法为同级运算,乘法和除法为同级运算)时,可以改变数和运算符号的位置。例如:
85
?
17
+
18
=
85
+
(
18
?
17
)
=
85
+
1
=
86
85?17+18=85+(18?17)=85+1=86,这里将
+
18
+18和
?
17
?17的位置进行了调整,先算
18
?
17
18?17得到
1
1,再与
85
85相加。
三、计算等差连续数的和
奇数个数的等差连续数求和
可以用中间数乘以个数来计算。例如:
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
+
9
1+2+3+4+5+6+7+8+9,中间数是
5
5,一共有
9
9个数,所以和为
5
×
9
=
45
5×9=45。
偶数个数的等差连续数求和
可以用(首数+尾数)×个数÷2来计算。例如:
1
+
2
+
3
+
4
+
5
+
6
=
(
1
+
6
)
×
3
=
7
×
3
=
21
1+2+3+4+5+6=(1+6)×3=7×3=21,这里个数是
6
6,首数是
1
1,尾数是
6
6,先计算
(
1
+
6
)
(1+6),再乘以个数
6
6的一半
3
3得到结果。
四、拆数法
乘法拆数
例如
101
×
9
=
(
100
+
1
)
×
9
=
100
×
9
+
1
×
9
=
900
+
9
=
909
101×9=(100+1)×9=100×9+1×9=900+9=909,把
101
101拆分成
100
100和
1
1,然后利用乘法分配律进行计算。
除法拆数
例如
72
÷
3
=
(
60
+
12
)
÷
3
=
60
÷
3
+
12
÷
3
=
20
+
4
=
24
72÷3=(60+12)÷3=60÷3+12÷3=20+4=24,把
72
72拆分成
60
60和
12
12,再分别除以
3
3后相加。
五、运用运算定律
乘法分配律
?
×
(
?
+
?
)
=
?
×
?
+
?
×
?
a×(b+c)=a×b+a×c。例如
35
×
(
20
+
2
)
=
35
×
20
+
35
×
2
=
700
+
70
=
770
35×(20+2)=35×20+35×2=700+70=770。
乘法结合律
(
?
×
?
)
×
?
=
?
×
(
?
×
?
)
(a×b)×c=a×(b×c)。例如
25
×
13
×
4
=
(
25
×
4
)
×
13
=
100
×
13
=
1300
25×13×4=(25×4)×13=100×13=1300,先算
25
×
4
25×4得到
100
100,再乘以
13
13就很简便了。
加法结合律
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c)。例如
(
12
+
13
)
+
15
=
12
+
(
13
+
15
)
=
12
+
28
=
40
(12+13)+15=12+(13+15)=12+28=40。。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:两个人之间隔着几英尺的暮色。《了不起的盖茨比》南沙一年级数学培训班。.
南沙一年级数学培训班。
广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:人的需求其实很简单:有一个温暖的家,一个贴心伴侣,一些快乐时刻,一些可能愚蠢的信念,最好,还跟随一个强调感恩的宗教。那,身体与心灵都不孤单了。。公因数与公倍数的计算方法
一、公因数的计算方法
(一)列举法
原理
将两个数的所有因数都写出来,通过观察、对比,最大的那个共有因数就是最大公因数。这种方法一般用于较小的两个数或初学者。
示例
求12和18的公因数。
12的因数有:1,2,3,4,6,12。
18的因数有:1,2,3,6,9,18。
12和18的公因数有:1,2,3,6,其中最大公因数是6。
(二)分解质因数法
原理
将两个数各自分解成质因数的形式,把公因数相乘就可以得出最大公因数。
示例
求24和36的最大公因数。
先分解质因数,24 = 2×2×2×3,36 = 2×2×3×3。
公有的质因数是2和3,2出现了两次,所以最大公因数为2×2×3 = 12。
(三)特殊情况
两数成倍数关系
原理
如果较大的数是较小的数的倍数,那么较小的数就是这两个数的最大公因数。
示例
比如3和9,9是3的倍数,那么3就是3和9的最大公因数。
两数是互质关系
原理
如果两个数是互质数(即只有公因数1),那么1就是它们的最大公因数。
示例
例如5和7是互质数,它们的最大公因数就是1。
二、公倍数的计算方法
(一)列举法
原理
将这两个数的倍数都按次序列举,直到首次出现相同倍数为止,这个数就是最小公倍数。这种方法适用于较小的数。
示例
求3和4的最小公倍数。
3的倍数有:3,6,9,12,15,18,21……
4的倍数有:4,8,12,16,20……
可以看到首次出现相同的倍数是12,所以3和4的最小公倍数是12。
(二)分解质因数法
原理
将两个数各自分解成质因数的形式,把公因数只乘一遍,其他因数都乘上所得的积就是两数的最小公倍数。
示例
求6和8的最小公倍数。
6 = 2×3,8 = 2×2×2。
公有的质因数是2,6还剩下质因数3,8还剩下2×2。
所以最小公倍数为2×3×2×2 = 24。
(三)特殊情况
两数成倍数关系
原理
如果较大的数是较小的数的倍数,那么较大的数就是这两个数的最小公倍数。
示例
如2和4,4是2的倍数,4就是2和4的最小公倍数。
两数是互质关系
原理
如果两个数是互质数,那么这两个数的积就是最小公倍数。
示例
像3和5是互质数,它们的最小公倍数就是3×5 = 15。 广州中小学辅导,广州小学补习班,广州初中辅导班,广州高中生辅导,广州学大教育一对一经典语录:当你认真努力的时候,全世界都会给你让路。当自我的进化加上积极乐观的心态,那么即使把心机流于表面也不会让世界不舒服,因为她们更懂得自我与他我的平衡,让设身处地成为一种习惯是一种极高的教养。 -- 《高级的心机是一种修养》南沙一年级数学培训班。。