咨询热线 400-6169-615
2025-05-06 21:31:05|已浏览:17次
佛山学大新初三培训学校。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:医院对于我们每个人意味着三个阶段,它是生命的报到处,是健康的维修站,是灵魂的发射台。佛山学大新初三培训学校。!。
佛山学大新初三培训学校。!
数字计算题快速解题技巧
一、利用运算定律
加法交换律、结合律
加法交换律:
?
+
?
=
?
+
?
a+b=b+a,例如计算
3
+
5
+
7
3+5+7,可以根据加法交换律变为
3
+
7
+
5
=
10
+
5
=
15
3+7+5=10+5=15。加法结合律:
(
?
+
?
)
+
?
=
?
+
(
?
+
?
)
(a+b)+c=a+(b+c),如计算
2
+
3
+
8
2+3+8,可利用加法结合律
(
2
+
8
)
+
3
=
10
+
3
=
13
(2+8)+3=10+3=13。
乘法交换律、结合律、分配律
乘法交换律:
?
×
?
=
?
×
?
a×b=b×a,例如
3
×
4
×
5
3×4×5,根据乘法交换律可变为
3
×
5
×
4
=
15
×
4
=
60
3×5×4=15×4=60。乘法结合律:
(
?
×
?
)
×
?
=
?
×
(
?
×
?
)
(a×b)×c=a×(b×c),像计算
2
×
3
×
5
2×3×5,利用乘法结合律
(
2
×
5
)
×
3
=
10
×
3
=
30
(2×5)×3=10×3=30。乘法分配律:
?
×
(
?
+
?
)
=
?
×
?
+
?
×
?
a×(b+c)=a×b+a×c,比如计算
5
×
(
3
+
7
)
=
5
×
3
+
5
×
7
=
15
+
35
=
50
5×(3+7)=5×3+5×7=15+35=50。这五大运算定律在四则运算中能简化计算过程,需要扎实掌握并灵活运用
1
1。
二、特殊数字组合的速算
首同末合十的两位数乘法
当两个两位数的十位数相同,个位数相加为
10
10时,积的右边两位数是个位数的乘积,积的左边数是十位上的数乘以比它大
1
1的数。例如
54
×
56
54×56,十位都是
5
5,个位
4
+
6
=
10
4+6=10,积的右边是
4
×
6
=
24
4×6=24,左边是
5
×
(
5
+
1
)
=
5
×
6
=
30
5×(5+1)=5×6=30,所以结果是
3024
3024;又如
81
×
89
81×89,积的右边
1
×
9
=
9
1×9=9(不满两位补
0
0为
09
09),左边
8
×
(
8
+
1
)
=
8
×
9
=
72
8×(8+1)=8×9=72,结果是
7209
7209。
1
1
任意两位数乘
99
99、三位数乘
999
999(左右两数合并法)
任意两位数乘
99
99:将这个两位数减去
1
1作为积的左面两位数字,
100
100减去这个两位数的差作为积的右边两位数。例如
62
×
99
62×99,
62
?
1
=
61
62?1=61作为左边,
100
?
62
=
38
100?62=38作为右边,结果是
6138
6138;
48
×
99
48×99,
48
?
1
=
47
48?1=47,
100
?
48
=
52
100?48=52,结果是
4752
4752。
任意三位数乘
999
999:把这个三位数减去
1
1作为积的左面三位数字,
1000
?
这个三位数
1000?这个三位数作为积的右边三位数字。例如
781
×
999
781×999,
781
?
1
=
780
781?1=780作为左边,
1000
?
781
=
219
1000?781=219作为右边,结果是
780219
780219;
396
×
999
396×999,
396
?
1
=
395
396?1=395,
1000
?
396
=
604
1000?396=604,结果是
395604
395604。
1
1
三、利用数字关系巧算
分数与除法关系巧算
在只有二级运算的题里,如果按顺序计算需多步计算,可利用乘除法关系简便计算。例如
24
÷
18
×
36
÷
12
=
(
24
÷
18
)
×
(
36
÷
12
)
=
24
18
×
36
12
=
4
24÷18×36÷12=(24÷18)×(36÷12)=
18
24
?
×
12
36
?
=4。
1
1
数字颠倒的两、三位数减法巧算
数字颠倒的两位数减法:用两位数字中的大数减去小数,再乘以
9
9就是它们的差。如
73
?
37
=
(
7
?
3
)
×
9
=
36
73?37=(7?3)×9=36,
82
?
28
=
(
8
?
2
)
×
9
=
54
82?28=(8?2)×9=54。
数字颠倒的三位数减法:用三位数中最大数减去最小数,再乘以
9
9,乘积分两边,中间填上
9
9就是它们的差。例如
581
?
158
=
(
8
?
1
)
×
9
=
63
581?158=(8?1)×9=63,所以
851
?
158
=
693
851?158=693。
1
1
添零加半巧算(一个数乘
15
15)
例如
26
×
15
26×15,将
26
26后面添
0
0得
260
260,再加上
260
260的一半
130
130,即
260
+
130
=
390
260+130=390,所以
26
×
15
=
390
26×15=390。
1
1
与
11
11相乘的速算(两边拉中间加)
任何数同
11
11相乘,把原数的个位移到积的个位位置,最高位移到积的最高位位置,中间的数分别是个位上的数加十位上的数的和为十位(如果相加的数和满十要向前一位进
1
1),十位上的数加百位上的数的和为百位等。例如
124
×
11
=
1364
124×11=1364,
568
×
11
=
6248
568×11=6248。
1
1
十加个减法(两位数加
9
9)
任何两位数加上
9
9的和,可以把这个两位数变成十位加
1
1个位减
1
1的数,即
36
+
9
=
45
36+9=45,
17
+
9
=
26
17+9=26。
1
1
四、利用规律简算
扩大缩小规律进行简算(除法)
有些除法计算题直接计算繁琐且易错,利用扩缩规律合理变形可简便计算。例如
7
÷
25
=
(
7
×
4
)
÷
(
25
×
4
)
=
28
÷
100
=
0.28
7÷25=(7×4)÷(25×4)=28÷100=0.28,
24
÷
125
=
(
24
×
8
)
÷
(
125
×
8
)
=
192
÷
1000
=
0.192
24÷125=(24×8)÷(125×8)=192÷1000=0.192。
1
1
五、其他技巧
同余算术
如果两个数除以同一个数后余数相同,那么这两个数的差也能被这个数整除。比如,对于任意整数
?
a、
?
b、
?
c,如果
?
≡
?
(
?
m
o
d
?
?
)
a≡b(modc),那么
?
?
?
a?b是
?
c的倍数。
2
2
近似取整
在进行复杂计算时,可适当进行近似取整,使计算更简便。例如计算
3.14
×
5.9
3.14×5.9,可近似看作
3
×
6
=
18
3×6=18。
2
2
使用指数
使用指数可以将大数字转化为小数字进行简单计算。例如计算
2
×
2
×
2
×
2
×
2
2×2×2×2×2,可写成
2
5
=
32
2
5
=32。
2
2
比例法
比例法是数学中常用的计算方法,能帮助快速求解各种比例问题。例如,已知
?
:
?
=
3
:
5
a:b=3:5,
?
=
6
a=6,求
?
b,根据比例关系
?
?
=
3
5
b
a
?
=
5
3
?
,可得
?
=
5
×
6
3
=
10
b=
3
5×6
?
=10。
2
2 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:不是别人使你烦恼,而是你拿别人的言行来烦恼自己。常以为别人在注意你,或希望别人注意你的人,会生活的比较烦恼。佛山学大新初三培训学校。!。
佛山学大新初三培训学校。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:“要不是有雾,我们可以看见海湾对面你家的房子,”盖茨比说,“你家码头的尽头总有一盏通宵不灭的绿灯。” 黛西蓦然伸过胳臂去挽着他的胳臂,但他似乎沉浸在方才所说的话里。可能他突然想到那盏灯的巨大意义现在永远消失了。和那把他跟黛西分开的遥远距离相比较,那盏灯曾经似乎离她很近,几乎碰得着她。那就好像一颗星离月亮那么近一样。现在它又是码头上的一盏绿灯了。菲茨杰拉德《了不起的盖茨比》。针对高二艺考生的文化课培训方案,以下是一些建议和内容安排:
一、制定学习计划
1.明确目标:考生需要明确自己的目标,包括报考学校、专业以及所需的文化课分数线。
2.制定时间表:根据每周的课程安排和个人的时间情况,合理安排学习时间,并坚持执行。
3.分配科目权重:根据考试科目的重要性和个人的优势劣势,合理分配各科目的学习时间和精力。
二、语文学习
1.基础知识巩固:复习常见的语文知识点,如词语辨析、句子结构等。
2.阅读理解能力训练:通过阅读各类文章,提高理解和分析能力。
3.写作训练:练习不同类型的作文,培养自己的写作表达能力。
三、数学学习
1.基础知识复习:巩固数学基础知识,包括代数、几何等。
2.解题技巧训练:掌握解题方法和技巧,注重题型的理解和应用能力。
3.模拟试题练习:通过解题训练和模拟试题,提高应试能力。
四、英语学习
1.词汇积累:扩大词汇量,重点掌握高频词汇。
2.听力训练:通过听力材料的听写和理解,提高听力水平。
3.阅读理解练习:进行各种类型的阅读理解训练,提高抓住关键信息和推理能力。
4.写作练习:练习不同类型的写作,如信件、议论文等。
五、历史学习
1.重点知识复习:复习重要的历史事件、人物和文化知识。
2.分析能力训练:通过解读历史文本和资料,培养历史分析和解析能力。
3.模拟考试训练:进行历史模拟试题练习,提高应试能力。
六、地理学习
1.基础知识复习:巩固地理基础知识,包括地理概念、地貌地貌、自然环境等。
2.图表解读能力训练:通过分析地图、图表等资料,提高图表解读和分析能力。
3.实地考察:结合实地考察,加深对地理知识的理解和应用。
七、物理学习
1.基础知识巩固:复习物理基础知识,包括力学、光学、电磁学等。
2.实验操作技巧训练:熟练掌握物理实验的操作方法和数据处理技巧。
3.解题能力训练:通过解题训练,提高物理问题的分析和解决能力。
八、化学学习
1.基础知识复习:复习化学基础知识,包括元素周期表、化学反应等。
2.实验操作技巧训练:熟练掌握化学实验的操作方法和安全措施。
3.解题能力训练:通过解题和化学计算训练,提高化学问题的分析和解决能力。
以上是一个较为全面的高二艺考生文化课培训方案,根据学生个人情况和学校要求,可以适当调整和补充每个科目的内容。同时,艺考生还要合理安排时间,保持身体健康和心理平衡,全面提升自己的综合素质和艺术修养。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:我不识何等为君子,但每事肯吃亏的便是;我不识何等为小人,但每事好占便宜的便是。佛山学大新初三培训学校。!。
佛山学大新初三培训学校。!。 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:尺有所短,寸有所长,永远抱一颗谦卑的心,才能让自己更加完善。人生没有完美,只有完善;岁月没有十全十美,只有尽量。。小数乘法速算技巧的历史演变
一、小数的起源与发展
小数概念的产生源于测量等实际需求,当测量物体时往往会得到不是整数的数,古人就发明了小数来补充整数。小数是十进制分数的一种特殊表现形式,分母是10、100、1000……的分数可以用小数表示,所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。在西方,一般认为小数是比利时数学家斯蒂文发明的,但最早使用现代意义的小数点的是德国数学家克拉维斯,他在1593年使用了小数点。不过直到19世纪末,小数的记号仍很混乱,现代小数点也分为欧洲大陆派(采用逗号)和英美派(采用圆点)两种记法。这些为小数乘法的发展奠定了基础,因为小数乘法运算必然涉及到小数的表示与理解。
二、乘法运算符号的演变与小数乘法的关联
18世纪美国数学家欧德莱发现乘法也是增加的意思,但又和加法不同,于是就把“+”号斜写成“*”号,表示数字增加的另一种运算法,并给它取名叫“乘号”。这一符号的确定,使得小数乘法在书写和表达上有了明确的运算符号。虽然这一演变并非专门针对小数乘法,但对整个乘法运算体系包括小数乘法是至关重要的基础,统一了小数乘法的运算符号表示,使人们能够明确地进行小数乘法的运算操作。
三、早期小数乘法计算的基本思路
早期在进行小数乘法计算时,可能并没有像现在这样系统的速算技巧。人们可能是按照最基本的乘法定义和小数的概念进行计算,即将小数看作分数形式,转化为分数乘法计算后再转化回小数结果。例如,计算
0.5
×
0.3
0.5×0.3,可能先看作
1
2
×
3
10
=
3
20
=
0.15
2
1
?
×
10
3
?
=
20
3
?
=0.15。这种方式比较繁琐,随着数学的发展和对计算效率的追求,逐渐形成了一些专门针对小数乘法的速算技巧。
四、现代小数乘法速算技巧的形成
转化为整数乘法计算
现代小数乘法速算技巧中一个核心的思想是先忽略小数点的存在,按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起,向左数出几位,点上小数点。这一技巧大大简化了计算过程。例如计算
2.5
×
3.2
2.5×3.2,先计算
25
×
32
=
800
25×32=800,因数中一共有两位小数,所以结果是
8.00
=
8
8.00=8。这一速算技巧的形成是基于小数与整数的关系以及乘法运算的规律,通过将小数乘法转化为已经熟悉的整数乘法,降低了计算难度。
利用乘法运算定律
乘法交换律、结合律的运用
在小数乘法中,可以根据乘法交换律
?
?
?
=
?
?
?
a?b=b?a和结合律
(
?
?
?
)
?
?
=
?
?
(
?
?
?
)
(a?b)?c=a?(b?c)进行凑整计算。例如计算
0.125
×
2.5
×
0.5
×
8
×
0.4
×
2
0.125×2.5×0.5×8×0.4×2,可以将式子变为
(
0.125
×
8
)
×
(
2.5
×
0.4
)
×
(
0.5
×
2
)
=
1
×
1
×
1
=
1
(0.125×8)×(2.5×0.4)×(0.5×2)=1×1×1=1。这种凑整的方法是通过观察因数的特点,利用乘法运算定律重新组合因数,使得计算更加简便,是在对整数乘法运算定律熟练掌握的基础上推广到小数乘法的结果。
乘法分配律的运用
对于乘法分配律
(
?
+
?
)
?
?
=
?
?
+
?
?
(a+b)?c=ac+bc在小数乘法中的运用也很常见。例如计算
2.5
×
3.2
+
6.8
×
2.5
2.5×3.2+6.8×2.5,可转化为
2.5
×
(
3.2
+
6.8
)
=
2.5
×
10
=
25
2.5×(3.2+6.8)=2.5×10=25。通过将式子转化为符合乘法分配律的形式,可以简化计算过程,这也是小数乘法速算技巧发展过程中的重要成果。
数值转化与分解凑整
还可以将数分解后再凑整,例如计算
0.125
×
2.5
×
0.5
×
6.4
0.125×2.5×0.5×6.4,根据
5
×
2
=
10
5×2=10,
25
×
4
=
100
25×4=100,
125
×
8
=
1000
125×8=1000,将
6.4
6.4分解成
8
×
0.4
×
2
8×0.4×2,再利用乘法结合律凑整。另外,也可以进行数值转化再凑整,如计算
2.9
×
3.2
+
0.71
×
32
2.9×3.2+0.71×32,根据“积不变的性质”,将“
0.71
×
32
0.71×32”转化成“
7.1
×
3.2
7.1×3.2”,再利用乘法分配律进行计算。佛山学大新初三培训学校。! 佛山中小学辅导,佛山小学补习班,佛山初中辅导班,佛山高中生辅导,佛山学大教育一对一经典语录:可是我一面心里想,我们这排灯火辉煌的窗户高高在这都市之上,从底下暮色苍茫的街道望上来,不知道蕴藏着何等人生的秘密,而我脑海中也见到这么一位过客,偶尔路过此地,抬头望望,不知所以。我自己似乎又在里边又在外边,对这幕人生悲喜剧无穷的演变,又是陶醉又是恶心。《了不起的盖茨比》佛山学大新初三培训学校。!。